
www.manaraa.com

Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2018

Generalized weighting for bagged ensembles
Hieu Trung Pham
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

Part of the Industrial Engineering Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Pham, Hieu Trung, "Generalized weighting for bagged ensembles" (2018). Graduate Theses and Dissertations. 16653.
https://lib.dr.iastate.edu/etd/16653

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F16653&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F16653&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F16653&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F16653&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F16653&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F16653&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/307?utm_source=lib.dr.iastate.edu%2Fetd%2F16653&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/16653?utm_source=lib.dr.iastate.edu%2Fetd%2F16653&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

www.manaraa.com

Generalized weighting for bagged ensembles

by

Hieu Trung Pham

A dissertation submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Major: Industrial Engineering

Program of Study Committee:
Sigurður Ólafsson, Major Professor

Daniel Nordman
Gül Okudan-Kremer

Justin Peters
Lizhi Wang

The student author, whose presentation of the scholarship herein was approved by the
program of study committee, is solely responsible for the content of this dissertation. The
Graduate College will ensure this dissertation is globally accessible and will not permit

alterations after a degree is conferred.

Iowa State University

Ames, Iowa

2018

Copyright c© Hieu Trung Pham, 2018. All rights reserved.

www.manaraa.com

ii

DEDICATION

To family and friends.

www.manaraa.com

iii

TABLE OF CONTENTS

LIST OF TABLES . vi

LIST OF FIGURES . viii

ACKNOWLEDGMENTS . ix

ABSTRACT . x

CHAPTER 1. INTRODUCTION . 1

1.1 Background . 1

1.2 Motivation . 2

1.3 Ensemble Learning . 5

1.3.1 Bootstrap Aggregating (Bagging) . 5

1.3.2 Boosting . 7

1.3.3 Stacking . 9

1.4 Weighted Averages . 11

1.4.1 Out of Bag Error . 11

1.4.2 Cesáro Averages . 12

1.4.3 Bayesian Model Averaging . 12

1.4.4 Borda Count . 13

1.5 Organization of Dissertation . 13

www.manaraa.com

iv

CHAPTER 2. CESÁRO RANDOM FOREST . 15

2.1 Introduction . 15

2.2 Methodology . 17

2.2.1 Cesáro Averages . 17

2.2.2 Cesáro Random Forest and Tree Sequencing 19

2.3 Results . 20

2.3.1 Theory . 20

2.3.2 Numerical Results and Interpretation 27

2.4 Conclusion . 33

CHAPTER 3. GENERALIZED WEIGHTING SCHEME FOR BAGGED ENSEM-

BLES . 34

3.1 Introduction . 34

3.2 Methodology . 35

3.2.1 Weighting Scheme . 35

3.2.2 Weighted Bagged Ensemble Learning 38

3.3 Numerical Results . 39

3.3.1 Traditional Results . 39

3.3.2 Synthetic Results . 48

3.4 Conclusion . 52

CHAPTER 4. WBENSEMBLER: AN R PACKAGE FOR WEIGHTED BAGGED

ENSEMBLE LEARNING . 54

4.1 Introduction . 54

4.2 Overview of wbensembleR . 56

www.manaraa.com

v

4.3 Implementation of Code . 59

4.3.1 Model Training . 59

4.3.2 Model Evaluation . 64

4.4 Package Limitations and Expansion . 66

CHAPTER 5. CONCLUSION . 67

5.1 Future Extension . 68

BIBLIOGRAPHY . 70

www.manaraa.com

vi

LIST OF TABLES

Table 2.1 Data set description for CRF experiments 28

Table 2.2 Average accuracy % (500 trees, 10 trials) comparing CRF and RF . 28

Table 2.3 Average accuracy % of CRF with ordering 1 and various number of

trees (100 trials) . 30

Table 2.4 Average accuracy % of RF and various number of trees (100 trials) . 31

Table 2.5 Average accuracy % of CRF with ordering 1 with 100 and 2000 trees

(10 trials) . 31

Table 2.6 Sonar data set with a stopping criterion (100 Trials) 32

Table 3.1 Summary of notation . 35

Table 3.2 Traditional data sets for general weighted bagged ensemble experiments 40

Table 3.3 Prediction accuracy (%) from 10 trials. Average accuracy ± one

standard deviation comparing weighted bagging, pure bagging, and

the random forest . 42

Table 3.4 Test optimal values (p and α) . 45

Table 3.5 Learners that outperform the random forest 47

Table 3.6 Breast data set with various levels of sparsity (average± one standard

deviation %) . 49

Table 3.7 Heart data set with various levels of spurious data points (average ±

one standard deviation %) . 50

Table 3.8 Haberman data set with various levels of noise (average ± one stan-

dard deviation %) . 51

www.manaraa.com

vii

Table 3.9 German Credit Card data set with varying ratios (average ± one

standard deviation %) . 52

www.manaraa.com

viii

LIST OF FIGURES

Figure 2.1 Asymptotic bound for Lemma 2.3.2 23

Figure 3.1 Comparison of p-values for f(x) = 1
xp

. 37

Figure 3.2 Comparison of p-values that outperform the random forest 46

Figure 3.3 Comparison of run times for 3 data sets 48

www.manaraa.com

ix

ACKNOWLEDGMENTS

Thank you Siggi, Dan, Gül, Justin, Lizhi, Heike, Steve, and Lawrence.

www.manaraa.com

x

ABSTRACT

Ensemble learning is a popular classification method where many individual simple learn-

ers contribute to a final prediction. Constructing an ensemble of learners has been shown to

consistently improve prediction accuracy over a single learner. The most common types of

ensembles include: bootstrap aggregated (bagged), boosted, and stacked. Each are different,

yet has the same foundation of combining multiple learners.

In this dissertation, we focus our attention to bagged ensembles; namely we propose a

generalization by way of model weighting. The new method is motivated by the potential

instability of averaging predictions of trees that may be of highly variable quality. To alleviate

this, we replace the usual arithmetic average with a Cesáro average for weighted trees in the

random forest. We provide both a theoretical analysis that gives exact conditions under

which we would expect this weighted ensemble approach to do well, and numerical analysis

that shows the new approach is competitive to other bagged ensembles when training a

classification model on numerous realistic data sets.

Going a step further we generalize our weights such that we allow simultaneous control

over bias and variance. In particular, we introduce a regularization term that controls

the variance reduction for bagged ensembles. Therefore, a new tunable weighted bagged

ensemble framework is proposed, resulting in a very flexible method for classification. Using

this methodology, we explore the impact tunable weighting has on the votes of each learner

in an ensemble.

To aid in the applicability of this body of work, the author discusses an R package that

allows users to implement our proposed weighting scheme to arbitrary bagged ensembles. The

www.manaraa.com

xi

package provides tools for constructing tunable bagged ensembles in the form of weights and

is titled wbensembleR.

www.manaraa.com

1

CHAPTER 1. INTRODUCTION

1.1 Background

Data Science, as currently termed, is not just statistics, mathematics, or computer sci-

ence, yet integrates all three. Today data science can be defined as an interdisciplinary field

that employs techniques and theories of the aforementioned subjects to extract knowledge

or insight from data (Blei and Smyth, 2017). The rapid growth and popularity of this new

field is apparent; various universities as well as a plethora of online platforms around the

world are offering degrees specializing in data science.

The foundational aspects of data science are well set. In 50 Years of Data Science,

Donoho (2017) describes data science as six divisions:

1. Data Exploration and Preparation

2. Data Representation and Transformation

3. Computing with Data

4. Data Modeling

5. Data Visualization

6. Science about Data Science

With regard to the first division Hadley Wickham, a well-known contributor in the world of

R and data science created tidyverse, a collection of R packages, for the specific purpose of

systematically formatting messy data (Wickham, 2016). Wickham’s Tidy Data (Wickham,

www.manaraa.com

2

2014) estimates that 80% of data science is spent on preprocessing data, that is, cleaning

and preparation. Certainly Wickham’s point is well justified as an intuitive understanding

of data is necessary before meaningful conclusions can be inferred.

The third and fourth division can be seen in parallel with machine learning. Max Kuhn’s

book, Applied Predictive Modeling, defines machine learning as the use of tools that utilizes

information to find relevant patterns (Kuhn and Johnson, 2013). Acknowledging Kuhn’s def-

inition, machine learning is separable into two parts: supervised and unsupervised learning.

The former is a way to describe problems where the outcome is known, that is, predictive

modeling. Whereas the latter allows a computer to find relationships between data without

a known goal, in other words, clustering. For an application of (hierarchical) clustering to

food hub systems refer to (Mittal and Krejci, 2017) and (Mittal, 2016).

Both subsets of machine learning play a vital role in data science and each possesses their

own unique challenges. For the scope of this dissertation, we limit ourselves to supervised

learning; specifically, we only consider classification models as opposed to regression models.

Given a standard supervised learning problem, a machine learning model is given training

data of the form {(x1, y1), ..., (xn, yn)} where xi denotes a vector of predictor variables or

features, and yi denotes a response. If Y =
n⋃

i=1
yi is a finite set of values such as: {Yes, No},

{Low, Medium, High}, {0,1}, etc, we consider this to be a classification problem. If Y is

expected to be a continuous response we take this as a regression problem. For the purposes

of our research, we focus on two-class classification problems.

1.2 Motivation

A few common machine learning models for classification are: decision trees (Breiman

et al., 1984), k-nearest neighbors (KNN) (Cover and Hart, 1967) and naïve Bayes (Rish,

2001). Each utilizes data in different ways and possess unique scenarios in which they

www.manaraa.com

3

perform well. For example, a decision tree’s structure exploits hierarchy in the importance

of features. Naïve Bayes expects predictor variables to be independent, and KNN assumes

feature variables can be mapped meaningfully into a metric space.

Since these can be considered simple learners, they are not without fault. Namely, each

model has low bias but high variance (Kuhn and Johnson, 2013). Every predictive model

contains error from bias and variance with the amount of each being determined by the data

and model choice. Bias is defined as a model’s understanding of underlying relationship

between features and target outputs; whereas, variance is the sensitivity to perturbations

in training data. Naturally, a model with low bias and low variance is desired but not

always producible. One common approach to reduce variance among learners is to create a

bootstrapped aggregated ensemble of models where an ensemble can be defined as a collection

of individual objects; in our case, the objects are machine learning models.

An ensemble of learners has been shown to consistently improve prediction accuracy over

a single learner (Zhou, 2012). Bagging and boosting are the most common ensemble methods,

each with distinct advantages (Quinlan, 2006). While boosting methods are typically very

tunable with numerous parameters, to date, the type of flexibility this allows has been

missing for bagging methods such as the random forest (Breiman, 2001). Indeed boosted

models, namely boosted trees, seem to be winning a variety of data science competitions

leaving the random forest seemingly forgotten. In xgboost, a popular boosting package in

R and Python, there exists a variety of parameters that users can tune to better fit their

data sets (Chen et al., 2018). However, as of now there is not a package nor any foundation

theory that allows tunability for bagged ensembles.

Bagging is an ensemble method for reducing variance of simpler learners with low bias

but high variance (Breiman, 1996a), but there is also evidence that simply reducing variance

is not always the best approach. In fact, it is reported that bagging works well with decision

stumps (Martínez-Muñoz et al., 2007), which have higher bias but lower variance than un-

www.manaraa.com

4

pruned trees. And while the best known bagging approach, namely the random forest, uses

unpruned trees, its feature sampling has a similar effect. Namely, restricting the number of

features available to a tree will on the average increase the bias. This is analogous to meth-

ods that focus primarily on reducing bias. Boosted trees are a popular ensemble method

where the purpose of boosting is reduced bias, but implementations of boosted trees include

one or more regularization parameters that are used to control the variance (Schapire, 2003).

Similarly, deep neural networks are successful because adding layers to the network reduces

bias, but at the same time numerous regularization parameters are used to reduce variance

(Schmidhuber, 2015). However there is a cost. Namely the training times for these mod-

els are long and there can be upwards of 30+ parameters to tune in an implementation.

Moreover, the tunability used to reduce bias and control for variance is not an easy task to

determine optimal parameters to have minimal bias and variance.

The success of such highly tunable methods motivates our new ensemble approach. While

the main idea of bagging is to reduce variance, we add tunable weights to the ensemble that

allows for simultaneously controlling the bias. In this dissertation, we acknowledge these

short comings and seek a way to address these missing components. The authors develop a

framework which provides parameters for added flexibility to bagged ensembles. Specifically

we propose a new tunable weighted bagged ensemble methodology, resulting in a flexible

method for classification. We present this in incremental improvements. Namely,

1. Consider a new weighted scheme for the random forest that we call the Cesáro Random

Forest

2. Generalize our weighted scheme to arbitrary bagged ensembles that allows for the

simultaneous control of bias and variance using just two parameters

www.manaraa.com

5

Using this methodology, we explore the impact tunable weights have on each learner in

an ensemble and compare the results with the best known bagged ensemble method, namely

the random forest. Each methodology is expanded upon in separate chapters.

1.3 Ensemble Learning

Here we discuss three popular ensemble methods, each with their unique benefits. In

practice, ensembles are a popular method for obtaining very high accuracy by combining

less accurate models (Dietterich, 2000). Hence it is understandable why this remains a

popular choice for predictive modeling.

1.3.1 Bootstrap Aggregating (Bagging)

In statistics, bootstrapping is a well known resampling with replacement technique with

a firm theoretical foundation. However, in terms of data mining, we only consider boot-

strapping in the context of building predictive models. For a concrete example, consider a

data set Γ = {(Xi, Yi), i = 1, ..., N} where Xi are the predictor variables or features, Yi is the

class and N is the total number of observations. Let Γ∗1 ⊂ Γ denote the bootstrap sample

of observations. From Γ∗1, model one is trained and tested against Γ\Γ∗1, the complement of

Γ∗1 in Γ, where the out of bag (OOB) error rate for model one is found by calculating the

number of wrong predictions. These steps are then repeated up to Γ∗k, where k is a user

parameter for the number of models desired (Azizi et al., 2016). In a classification problem

each model provides a vote for its prediction of the class of each observation. The class with

the greatest number of votes, amongst all models, is the final casted prediction. Considering

only two-class data sets we can relabel classes as {0, 1}. This formulation allows calculations

of an arithmetic mean since the votes form a sequence whose terms are zero or one. Namely,

if the average of this sequence is greater than .5 then class 1 is predicted, and 0 if the average

www.manaraa.com

6

is less than .5. In the event of a tie the implementer decides the class label, but typically

a class is chosen at random. One can think of this type of ensemble as a majority voting

scheme where the class with the greatest number of votes wins.

Breiman (1996a) provides a theoretical and numerical treatment of bagging learners such

as: decision trees, KNN and more. His numerical results show that bagging can consistently

outperform a single learner.

Arguably, the most popular bagged ensemble learner is the random forest (Breiman,

2001). The random forest is an ensemble of bagged decision trees with the notable exception

being at each node only√p attributes, where p is the total number of features, are considered

for splitting and no pruning of the tree is performed. Breiman (2001) first suggested bagging;

then the creation of the random forest as a specific bagging method followed. However, aside

from the number of trees generated there are no tunable parameters for the random forest

or any bagged ensemble.

With that said, an important question when creating an ensemble of learners is deciding

its size, namely, the number of models in the ensemble. Oshiro et al. (2012) suggested that

the random forest should have between 64 - 128 trees; by doing this there is a balance

between computational time and accuracy. However, in general, this is not an easy question

to answer. Namely, as the number of classes in your data set increases so should the number

of models in the ensemble (van Dop and Steyn, 1990). Dietterich (2000) gives a detailed

explanation of bagged ensembles from a numerical perspective and compares them to other

ensemble methods such as boosting.

Still today, ensembles are widely used across various disciplines. In the area of health

care, Bashir et al. (2016) applied a weighted ensemble to predict heart disease in patients.

Whereas Valentini et al. (2004) constructed a bagged ensemble of support vector machines

for cancer recognition. Both were able to accomplish their goal in a more accurate manner

compared to other existing methods.

www.manaraa.com

7

Moreover, bagged ensembles is still an active research area. In the area of deep learning,

Mosca and Magoulas (2018) considered a bagged ensemble as a distillation method for reg-

ularization. From their findings, they were able to conclude that ensembling smaller neural

networks, one can approximate the structure of a deep neural network. From the perspective

of class imbalance, Collell et al. (2018) combined bagged ensembles with threshold-moving

to adapt the performance measure using a natural class distribution. Their work provides

insight and a new method to combat class imbalance with bagged ensembles. From this

summary, it is clear that bagged ensembles continually play an active role in theoretical and

practical research. It goes without saying that our work of tunable parameters will be a

welcomed and popular addition for this field.

1.3.2 Boosting

Boosting, an idea similar to bagging, primarily relies on many weak learners; that is,

models which perform slightly better than random. However, instead of a large ensemble

containing many models, the result of boosting is a single strong learner; namely a classifier

that is well correlated to the underlying structure of the data (Setak et al., 2017). Unlike

bagging, which attempts to reduce variance, boosting aims to reduce bias. It is proven that

as long as the performance of each individual learner is better than random guessing, the

final model will converge to a strong learner.

Historically, two boosting methods were discovered by Schapire (1990) and Freund (1995)

independently. However, neither were able to fully utilize the structure of the weak learner.

To combat these issues, Freund and Schapire (1996) worked together to produce a new

boosting algorithm called adaptive boosting or adaboost. This algorithm is very popular and

perhaps has the most significance and impact in the machine learning world. For their work,

they were awarded the Gödel Prize in 2003 (Freund and Schapire, 1997).

www.manaraa.com

8

The procedure for adaboost is as follows, a sequence of weak learners is generated where

at each step in the learning process the algorithm finds the best classifier with respect to

observation weights. The instances which are incorrectly classified in the ith step are given

more weight in the i + 1st step, whereas samples that were correctly classified receive less

weight. From this, observations which are difficult to classify are given increasing larger

weight until the algorithm constructs a model which can correctly label these observations.

At each stage, the new step weight is computed based on the error rate of that iteration.

Similar to bagging, boosting can be applied to a variety of classification models; however,

some learners should be considered over others. For example, decision trees and stumps are

popular choices for boosting since these can satisfy the weak learner assumption due to the

ability to restrict depth (Breiman, 1998).

With the theory and applicability of adaboost established, many generalizations followed.

Some examples include, the logitboost, gradient boosting, extreme gradient boosting and

stochastic gradient boosting (Schapire, 2003). The collection of these models is jointly termed

gradient boosting machines. Each differs in a unique way; however, all being boosting

methods, they have the goal of converting weak learners into a single strong leaner.

Boosting, particularly extreme gradient boosting (XGBoost) of decision trees, has become

the most reliable method for data scientists to achieve state-of-the-art results. In 2015

Kaggle, a well-known data science website, held 29 competitions. Of the 29 winning solutions,

17 utilized XGBoosting in some form (Chen and Guestrin, 2016).

Aside from Kaggle competitions, the significance of boosted ensembles is well represented.

Recently, Gupta et al. (2015) quantified the influence music has on the moods of listeners

by constructing a new framework called Boosted Ensemble of Single feature Filters Models.

This model improved the signal to noise ratio by a factor of 1.92 over the best baseline

models. In some theoretical work, Jing et al. (2008) altered the structure of a Bayesian

network to incorporate a boosted structure with numerical results supporting the benefit of

www.manaraa.com

9

their findings. From these examples, one can see the impact Fruend and Schapire had on

the data science world.

However, boosting is not without faults. On some data sets, boosting methods will

severely overfit; that is, not generalize to a new data set well. Indeed, Buhlmann and

Hothorn (2007) and Jiang (2000) both explain the consequences of boosting models and

overfitting. This overfitting can be associated to the fact that boosting intentionally tries to

learn each observation exactly. However, most implementations of boosting algorithms have

a plethora of tunable parameters to combat this; such as restricting the number of learners

or altering a learning rate (Fattahi et al., 2015). Vezhnevets and Barinova (2007) and Elith

et al. (2008) give further insights about how modifying the traditional boosting algorithm

can reduce overfitting. This versatility for boosted ensemble is a big advantage that general

bagged ensembles do not have.

1.3.3 Stacking

Although less common than bagging and boosting another ensemble learning approach is

stacking (Zenko, 2004). This involves the construction of a wrapper algorithm that combines

the predictions of numerous other learning algorithms. Unlike the aforementioned ensembles,

which only consider a single model, stacking involves the collection of different learning

algorithms.

In detail, stacking can be visualized in two levels. To begin, one must first separate

the training data into two parts, say X1, and X2. The first step is building many distinct

learners on X1 with complete parameters. Once these are built, one proceeds to evaluate

their performance on X2. Using the results of X2, we create a new data frame which has the

same number of rows as our original training data, but the difference being that the column

labels are now each of the models with results from X2. On the second level, a new wrapper

www.manaraa.com

10

learning model is used to perform the final prediction on the actual testing data. In practice

a logistic regression is commonly used for binary classification.

This concept of stacking was first developed by Wolpert (1992). However his paper

contained no theoretical foundation but simply an ad-hoc analysis. These problems were

somewhat solved by van der Laan et al. (2007) where the authors established that stacked

ensembles represent an asymptotically optimal learning system. Although, the authors at-

tempted to put stacked ensembles on top of a pedestal, they were not completely decisive in

constructing the theoretical foundation. Today, stacked ensembles is seen as a black box al-

gorithm. In Stacked Ensemble Models for Improved Prediction Accuracy (Gunes et al., 2017),

a group of researchers from the SAS Institute, attempts to give an intuitive explanation to

stacked ensembles, but lacked sufficient details for a complete theoretical framework.

Although bagging and boosting are given the most attention, it does not imply that

stacked ensembles are not of value. In fact the top two performers in the Netflix competition

utilized a form of stacking called blending (Sill et al., 2009). Moreover, Ozay and Vural

(2012) showed that stacking can be successfully applied to classification and even outperform

adaboost and the random forest.

In specific scenarios, constructing a stacked ensemble has seen considerable interest in

the area of health care. Both Bhasuran et al. (2016) and Ekbal and Saha (2013) considered

a stacked ensemble approach to draw out additional information in their data. Bhasuran

et al. (2016) developed a classifier combined with fuzzy matching to recognize rare diseases.

Whereas Ekbal and Saha (2013) applied his ensemble to understand and design insights into

their data. Although one can consider this ensemble type to be a black box, it is still of use

and widely applicable to various fields.

www.manaraa.com

11

1.4 Weighted Averages

In this section, we explain different types of weights for consideration in a weighted

average. The traditional mean is given by the arithmetic average; that is, 1
|I|

∑
i∈I
i where

I is some finite set. However, given any finite set, we can perform a weighted average:∑
i∈I
wii/

∑
i∈I
wi where wi is a vector of weights. The strength of the weight is usually determined

by the application area or the implementer. Below we review different weighting methods

to determine ways to obtain wi.

1.4.1 Out of Bag Error

Given that our focus is restricted to bagged ensembles, we initially consider weights

utilizing the out of bag error. As previously mentioned, recall that when bagging, random

observations are sampled with replacement from a data set, ∆. Hence, the observations

that were never sampled are used as a testing set and an error value is obtained, this is

defined as the out of bag error (OOB). Breiman (1996b) gives a thorough study of this in

his paper, Out-of-Bag estimation. With this established, one can develop weights, wi, that

are proportional to the error of that model. Naturally given a set of OOB errors {o1, ..., on},

we can define our weights to be wi = 1/oi. In practice we have oi ∈ [0, 1]; thus, oi = 0 is

certainly possible. In this case, we can define some arbitrary weight value as long as the

value is the largest amongst all wi. From this, it is apparent that as oi → 1, the strength

of the weight decreases. Using the OOB for a weighted error measure is the most natural

method in the context of bagged ensembles.

Specifically, El Habib Daho et al. (2014) proposed a weighted stacking method using the

out-of-bag error as a way to measure tree importance. Their research provided some fruitful

results of improved prediction accuracy. Moreover, Li et al. (2010), Ronao and Cho (2015),

and Winham et al. (2013) all suggested weighted trees again using the OOB as a measure

www.manaraa.com

12

of tree importance. Ronao and Cho (2015) and Winham et al. (2013) were able to increase

the prediction accuracy of their desired classification problem; however, they did so in an

ad-hoc nature. Namely, they were only to attempting to answer a specific question. On

the other hand, El Habib Daho et al. (2014), and Li et al. (2010) developed the theory of

their weighted schemes, but were unable to determine specific factors where their weighted

scheme worked best.

As we can see, using the OOB as a measure corresponding to a weighted average is indeed

popular. As previously stated, this the most common and natural measure.

1.4.2 Cesáro Averages

Given a real-valued sequence {an}N
n=1, the Cesáro averages are the terms of {cn}N

n=1,

where cn = 1
n

n∑
k=1

ak. For simplicity, we refer to {cn} as the Cesáro sequence

For a bagged ensemble with n models, let {vi}n
i=1 denote the sequence of votes up to

model i. By applying the Cesáro averages to {vi}n
i=1 we have the weight associated to vote

vi to be wi =
n∑

j=i

1
j
.

We further discuss the Cesáro averages in Chapter 2.

1.4.3 Bayesian Model Averaging

Considering a probabilistic approach, Hoeting et al. (1999) provided a method called

Bayesian Model averaging (BMA) where weights are computed from a posterior distribution

on the data set ∆. Graefe et al. (2015) applied this idea to forecasting in social sciences.

Essentially BMA attempts to average over all possible combinations of feature variables as it

attempts to best model the data set under uncertainty. Indeed BMA assigns higher weight to

models that differ significantly from other models in the ensemble. However, some concerns

are that lower weight can be assigned to two different models but each model contains

unique information. Moreover, it is possible that one model may be given all the weight due

www.manaraa.com

13

to BMA’s convergence properties; in which case, this becomes an optimal model selection

problem. That is, BMA becomes a feature selection method. In fact, Wu et al. (2015) has

shown that using BMA for feature selection can improve the accuracy of the typical naïve

Bayes classifier.

1.4.4 Borda Count

A different type of weighted voted that has been applied by Ponti (2011) is the Borda

count (Saari, 1985) which has its roots from decision theory (Adressi et al., 2016). In this

method, each vote is given a point ranking usually in reference to the number of classes.

In the end, the class with the largest point total wins. As an overview of the Borda count,

Emerson (2013) gives a thorough review of the original Borda count method from a numerical

and theoretical perspective. However, this sort of measurement system is typically applied in

cases where there are more than two classes such as with elections (Klamler, 2004) or sports

hall of fame voting (Fraenkel and Grofman, 2014) . However, since our scope is limited to

two-class data sets, a weighted vote system such as the Borda count cannot be effectively

applied.

Related to the Borda count is also the system where better models are given more than

one vote. That is, in an ensemble if one model is much better than others, that model should

be given at least two plus votes while the others simply cast a single vote. However, the

problem of this is how to decide how many extra votes the model should receive as well as

determining the better models.

1.5 Organization of Dissertation

Chapter 1 contains the introduction, motivation and literature review necessary for a

comprehensive understanding for the remaining parts of this dissertation. Next, Chapter 2

www.manaraa.com

14

presents the Cesáro Random Forest (CRF) supported theoretically and numerically. Chapter

3 allows for a generalization of the ideas in Chapter 2. That is, we allow for arbitrary learners

and a generalized weighting scheme. An R package is presented in Chapter 4 which allows

for users to implement the ideas from Chapters 2 and 3. Finally, Chapter 5 contains the

conclusion along with future work ideas.

www.manaraa.com

15

CHAPTER 2. CESÁRO RANDOM FOREST

2.1 Introduction

The random forest (RF) methodology is a widely used machine learning technique for

solving classification and regression problems (Breiman, 2001). It has been applied in various

applications spanning many disciplines. To give a couple of recent examples, Naghibi et al.

(2017) applied the random forest model in the domain of geography for potential water

mappings. Whereas Subasi et al. (2017) successfully diagnosed kidney disease using the

random forest.

The heart of the random forest lies with the construction of an ensemble of weak learners,

namely, decision trees employing a restricted subset of features or predictor variables. These

learners are flexible, easy to visualize, and have fast training times (Friedman and Hall, 2007).

The usual implementation of the RF involves the creation of many individual decision trees

through a bootstrap resampling process. That is, each tree is generated by a random subset

of possibly repeated data points. Since some data points are not included in each resampled

subset, for each tree, we have an associated out of bag (OOB) error. This error estimates

how accurate each tree is when applied to data that was not used to generate the tree.

Additionally, at all nodes, each candidate split is made from a random subset of features

and evaluated by the Gini impurity index (Strobl et al., 2007). Typically, for a classification

problem with n features,
√
n features are considered at each split. Unlike in the case of a

single decision tree no pruning is done.

While the RF is a highly effective method, a potential downside is that predictions are

sometimes highly volatile due to the purposeful randomness, that is, the resampling of the

www.manaraa.com

16

training data and the subspace sampling of the predictor variables. Because of this, if

we run the RF algorithm repeatedly it is possible to get a different prediction each time.

Asymptotically the random forest should be stable; in other words, using an arbitrarily large

number of trees one should get repeatable predictions. However, if this convergence is slow

it may cause difficulties.

Ideally, given a machine learning model we would hope that the same (correct) prediction

is made each time. However, this is not always true for any algorithm, including the random

forest. To illustrate this phenomena take the classical Titanic data set (Hendricks, 2015)

where we attempt to predict the gender of a passenger. Running the classical random forest

10 times to predict the 341st observation, we obtain the following predictions using a 100

tree ensemble:

{Male, Female, Female, Male, Female, Male, Male, Female, Male, Female}.

For this small ensemble the RF thus predicts the two class values equally; however, this

improves as we increase the number of trees. From a 1000 tree ensemble we have a 6/4 divide

in favor of males. Using 20000 and 50000 trees we obtain 8/2 and 10/0 split, respectively.

Indeed, for a large number of trees we obtain stable predictions for male, which is the correct

class; however, requiring a large ensemble for a small data set seems impractical. Although

this is certainly an atypical example, this serves to illustrate our point.

In this chapter our goal is twofold. For one, we propose a numerically weighted tree

scheme to add stability; that is, create a modified RF so that repeated runs will produce

the same or near-same predictions. Secondly, with this added stability we want to study the

impact on the accuracy for two-class classification problems. To test the behavior of this

proposed method, we apply this to classical data sets commonly used in the data mining

research community.

www.manaraa.com

17

2.2 Methodology

2.2.1 Cesáro Averages

To increase the stability of the RF we propose using Cesáro averages (Stein and Shakarchi,

2003).

Definition 2.2.1. Given a real-valued sequence {an}N
n=1, the Cesáro averages are the terms

of {cn}, where cn = 1
n

n∑
k=1

ak. For simplicity, we refer to {cn} as the Cesáro sequence

The historical roots of the Cesáro averages comes from the field of harmonic analysis.

Typically, this is used to give quasi-convergence to a divergent sequence. For example,

consider the infinite sequence {bn} = {1, 0, 1, 0, ...}. Clearly, this does not converge to any

real number due to its oscillating behavior. Intuitively, one might be inclined to say that

the limit of the sequence is 1/2. This intuition would serve well as one can easily verify that

the Cesáro sequence does indeed converge to 1/2. Hence for a divergent series, we can add

stability for possible convergence and thus motivates using such averages in our context. A

well-known result shows that if a sequence converges to a number c, then the Cesáro sequence

converges to c as well. However, the converse is not necessarily true. For our purposes, we

only consider a sequence of finite length. Namely, the number of trees generated dictate the

length of our sequence.

For the duration of this chapter we let {vi} denote the sequence of votes up to tree i for

a given instance, and {ṽi}n
i=1 denote the cumulative average of {vi}n

i=1 up to term i, that is,

ṽn = 1
n

n∑
k=1

vk. We define the nth term of our Cesáro sequence to be cn = 1
n

n∑
i=1

ṽi. From this,

it is determined that the vote casted, for a single instance, by the entire random forest is

based off the value of the last term in the Cesáro sequence, cn. However, our construction

of the Cesáro sequence does not make the numerical weights applied to each tree clear. To

address this we refer to the following lemma.

www.manaraa.com

18

Lemma 2.2.1. Given a random forest with n trees, let {vi}n
i=1 denote the sequence of votes

up to tree i. By applying the Cesáro averages to {vi}n
i=1 we have the weight associated to

vote vi to be wi =
n∑

j=i

1
j

Proof. Observe,

cn = 1
n

n∑
i=1

ṽi

= 1
n

[
v1

1 + v1 + v2

2 + ...+ v1 + v2 + ...+ vn

n

]
= 1
n

[(
n∑

i=1

1
i

)
v1 +

(
n∑

i=2

1
i

)
v2 + ...+

(1
n

)
vn

]

Hence we have our weighted sequence {wi}n
i=1 where wi =

n∑
j=i

1
j
, with our normalizer

being
n∑

i=1

n∑
j=i

1
j
.

We first note that each weight can be represented as the partial sums of the harmonic

series. From this equivalent representation of the Cesáro averages in terms of numerical

weights, we have a clear schema for weighted votes. Additionally, from these weights there

are some conclusions to infer. To begin, the first few votes are given heavy importance due

to the construction of the weights. This can be readily seen by a simple observation of

the summation. Indeed, the harmonic series grows slowly, so that terms in the beginning

are much greater than the end. In fact, approximately 2.5 × 108 terms of the harmonic

series are needed to sum to 20 (Weisstein, 2004). Due to such importance being placed

at the beginning, it makes sense to order the trees in the best way possible with the best

performing trees being placed at the beginning. We therefore need to address how to identify

the best trees.

www.manaraa.com

19

2.2.2 Cesáro Random Forest and Tree Sequencing

For our implementation of the RF we split our data set into two parts. Specifically, the

training data set consists of 3/4 of the original sample with the remaining 1/4 being used

for testing. Here we propose two different ways to sequence the trees, that is, giving the best

trees the most weight. They are:

• Order 1: Out of Bag (OOB) Error Rates

• Order 2: Accuracy on a Second Training Set

As stated earlier, for each tree there is an associated out of bag error. Based on this,

trees with a lower OOB error rate are better performers and should be placed first, that is,

given more weight. Using this as a way to sequence our trees is the most natural method.

For Order 2, with our training set of size 3/4 the original we build a second training data

set. This second set is size 1/4 of the first training set and essentially acts as an independent

testing set. To be explicit, the trees generated from our first training set are tested against

the second training set. From this we determine the best tree by evaluating which trees had

the highest number of correct predictions.

Given the different types of sequencing and the weights based off the Cesáro averages,

we have our algorithm for what we will call the Cesáro Random Forest (CRF) in Algorithm

1.

As previously stated the user determines what occurs if the weighted average equals 1/2.

For our implementation we decided to label the class zero as opposed to deciding at random.

www.manaraa.com

20

Algorithm 1 Cesáro Random Forest
Input n - Size of ensemble, ∆ - Training data set, Λ - Testing data set
Output Vector of predictions

1: for i from 1 to n do
2: Generate ith decision tree, Ti, based upon classical random forest procedure
3: Store out-of-bag error for Ti

4: Test Ti on Λ to receive votes for each observation
5: end for
6: Sequence {Ti}n by out-of-bag error
7: Compute vector of weights using Lemma 2.2.1
8: for each observation j in ∆ do

9: Compute cj =

n∑

i=1
wivi

n∑
i=1

wi

10: Store cj

11: end for
12: return Vector {cj}

2.3 Results

2.3.1 Theory

As noted earlier, due to the nature of the harmonic series, most of the mass of the

partial sums is near the beginning. An easy way to visualize this is with the function

f(x) = 1/x, x > 0, a close approximation to ∑
n

1
n
, which decreases rapidly to 0 and has the

lim
x→0+

1/x = +∞. From this reasoning we establish a few results.

Lemma 2.3.1. Let {ai}n
i=1 denote a sequence where each term is either a or b. Suppose

the first k terms are the same. If m of the remaining n-k terms are the opposite of the first

k then the Cesáro weighted average of {a, ..., a, b, ..., b, a, ..., a} will be closer to b than any

other ordering where our weights are wi =
n∑

j=i

1
j
.

Proof. Without loss of generality, define Φ : {a, b} → {0, 1} as a bijection. Suppose {bn} =

{0, ..., 0, 1, ..., 1, 0, 1, 0, ..., 0} is a worse ordering. Observe

www.manaraa.com

21

1
n

[
1

k + 1 + ...+ 3k − 1
4k − 1 + 3k − 1

4k + 3k
4k + 1 + ...+ 3k

n

]

<
1
n

[
1

k + 1 + ...+ 3k − 1
4k − 1 + 3k

4k + 3k
4k + 1 + ...+ 3k

n

]

This is a contradiction to assuming {bn} = {0, ..., 0, 1, ..., 1, 0, 1, 0, ..., 0} was a worse ordering.

Essentially, Lemma 2.3.1 explains that the given sequence of trees will provide the worst

scenario in terms of being numerically close to b. This simple result will become useful in

application to other proofs.

Given that most of the mass of the harmonic series is given near the beginning, one

might wonder if there exists a natural number, N , such that if the first N trees vote the

same class the entire Cesáro RF will predict that class. That is, since the harmonic series is

so dominant at the beginning, is there a point that the remaining trees have no significance

if the beginning trees vote a certain way? This leads to our first theorem.

Theorem 2.3.1. Let {0,1} be the two classes for a given data set. Let n ≥ 34, where n is

the number of trees. Given any instance, if the first k = .2n ∈ N, trees predict the same

class, then the Cesáro random forest will predict that class.

The interpretation of Theorem 2.3.1 is that if the first .2n trees cast the same vote then

regardless of what happens with the remaining .8n trees, the Cesáro RF will vote in-line

with the first .2n trees. From this we can see how important this implies the sequencing of

trees to be. If we choose the best way to order the trees, then we are able to completely

determine the outcome of any instance. However, such assumptions are too extreme in the

sense that it is unlikely that the first 20% of trees will vote the same class or predict the

correct class. This leads to our next theorem that provides a bit more flexibility.

www.manaraa.com

22

Theorem 2.3.2. Let {a,b} be the two classes of a data set. Let n ≥ 59 be the number of

trees. Given any instance, suppose the first 0 < k ≤ .2n trees vote class {a}, k, n ∈ N. If

at most 3k of the remaining n − k trees votes class {b} then the Cesáro random forest will

predict {a} as the majority class.

Before providing proof of these statements we must first reference a lemma that gives an

asymptotic representation on the partial sums of the harmonic series.

Lemma 2.3.2.

x∑
n=1

1
n

= ln(x) + γ +O
(1
x

)

> ln(x+ 1)

where γ is the Euler-Mascheroni constant.

Proof. Apostol (1976) page 55 proves the equality. For the inequality observe that since

f(x) = 1/x is a strictly decreasing function we have:

1 + 1
2 + ...+ 1

n
>

x+1∫
1

dt

t
= ln(x+ 1).

As further explanation of Lemma 2.3.2 we define the Big O notation (O(·)) in Definition

2.3.1.

Definition 2.3.1. If g(x) > 0 for all x ≥ a, we write f(x) = O(g(x)) to mean there exists

a constant M > 0 such that

|f(x)| ≤Mg(x) for all x ≥ a

In Figure 2.1, we approximate M to be approximately 1/2.

www.manaraa.com

23

0.0

0.1

0.2

0.3

0.4

0.5

0 50 100 150 200

X−value

Y
−

va
lu

e

Figure 2.1: Asymptotic bound for Lemma 2.3.2

With our preliminaries set, we move forward to proofs of Theorems 2.3.1 and 2.3.2,

respectively.

Proof of Theorem 2.3.1. Without loss of generality, suppose the first k = .2n ∈ N predictions

for n trees are all of class 1. Set α = 1
1 + 2

2 + ... + k

k
+ k

k + 1 + ... + k

n
. It suffices to show

that cn = 1
n
α ≥ .5. Observe:

cn = 1
n
α

= 1
n

 k∑
i=1

1 +
n∑

i=k+1

k

i

= 1
n

[
k∑

i=1
1 + k

(
n∑

i=1

1
i
−

k∑
i=1

1
i

)]

= k

n
+ k

n

(
n∑

i=1

1
i
−

k∑
i=1

1
i

)

= .2 + .2
(

n∑
i=1

1
i
−

k∑
i=1

1
i

)

www.manaraa.com

24

= .2 + .2
(

n∑
i=1

1
i
−

k∑
i=1

1
i

)

> .2 + .2 (ln(n+ 1)− ln(k + 1)) by Lemma 2.3.2

= .2 + .2
[
ln
(
n+ 1
k + 1

)]

Our result follows for n ∈ N satisfying .02++.2
[
ln
(
n+ 1
k + 1

)]
≥ .5. Using a numerical solver,

we obtain n ≈ 33.5869. Hence for k, n ∈ N satisfying k = .2n, n ≥ 34 we have our result.

Proof of Theorem 2.3.2. Define Φ : {a, b} → {0, 1} as a bijection. Showing the re-

sult holds for worst case is sufficient, that is, without loss of generality, let {vi}n
i=1 =

{0, ..., 0, 1, ..., 1, 0, ..., 0} be the sequence of votes. From Lemma 2.2.1, we have our weighted

sequence {wi}n
i=1 where wi =

n∑
j=i

1
j
. It is enough to show that:

n∑
i=1
wivi

n∑
i=1
wi

=

4k∑
i=k+1

wi

n∑
i=1
wi

≤ 1
2 or equivalently,

4k∑
i=k+1

n∑
j=i

1
j
≤ 1

2

n∑
i=1

n∑
j=i

1
j

= n

2

Observe,
4k∑

i=k+1

n∑
j=i

1
j

=
4k∑

j=k+1

j − k
j

+
n∑

j=4k+1

3k
j

=
4k∑

j=k+1
1−

4k∑
j=k+1

k

j
+

n∑
j=4k+1

3k
j

= 3k − k
4k∑

j=k+1

1
j

+ 3k
n∑

j=4k+1

1
j

= 3k − k
 4k∑

j=1

1
j
−

k∑
j=1

1
j

+ 3k
 n∑

j=1

1
j
−

4k∑
j=1

1
j

= 3k − k

4k∑
j=1

1
j

+ k
k∑

j=1

1
j

+ 3k
n∑

j=1

1
j
− 3k

4k∑
j=1

1
j

www.manaraa.com

25

= 3k − 4k
4k∑

j=1

1
j

+ k
k∑

j=1

1
j

+ 3k
n∑

j=1

1
j

≤ 3k − 4k(ln(4k) + γ) + k(ln(k) + γ + 1
k

) + 3k(ln(n) + γ + 1
n

) by Lemma 2.3.2

= 3k − 4k ln(4k) + k ln(k) + 3k ln(n) + 1 + 3k
n

= 3k − 4k ln(4)− 4k ln(k) + k ln(k) + 3k ln(n) + 1 + 3k
n

= 3k − 4k ln(4)− 3k ln(k) + 3k ln(n) + 1 + 3k
n

Let k = αn, this implies 0 < α ≤ .2. We now have:

4k∑
i=k+1

n∑
j=i

1
j
≤ 3αn− 4αn ln(4)− 3αn ln(αn) + 3αn ln(n) + 3αn

n
+ 1

= 3αn− 4αn ln(4)− 3αn ln(α)− 3αn ln(n) + 3αn ln(n) + 3α + 1

= n(3α− 4α ln(4)− 3α ln(α)) + 3α + 1

For 0 < α ≤ .2, g(α) = 3α − 4α ln(4) − 3α ln(α) obtains a maximum at α = 1
4 3
√

4
, and

h(α) = 3α obtains a maximum at α = .2.

Hence we obtain a new bound:
4k∑

i=k+1

n∑
j=i

1
j
≤ n

(
3

4 3
√

4
− 1

3
√

4
ln(4)− 3

4 3
√

4
(−4

3) ln(4)
)

+ 3
5 + 1

= 3n
4 3
√

4
+ 8

5

To ensure
4k∑

i=k+1

n∑
j=i

1
j
≤ n

2 , we want n large enough to satisfy 3n
4 3
√

4
+ 8

5 ≤
n

2 . This holds if

n ≥

8
5

1
2 −

3
4 3
√

4

≈ 58.12

Thus, for k, n ∈ N satisfying k ≤ .2n and n ≥ 59, we have our result.

www.manaraa.com

26

In Theorem 2.3.2 we have a condition that is more attainable. Namely, we no longer need

all .2n trees to vote the same class to ensure the correct class as in Theorem 2.3.1. Now,

if the first k ≤ .2n trees vote a particular class, then we just have to ensure that there are

only so many wrong votes. From this, we do not imply from these two theorems that this is

the only way to predict the correct class. We are simply giving a statement to guarantee the

correct prediction if the assumptions of either theorem are satisfied. With this reasoning,

we state some corollaries.

Corollary 2.3.1. If the conditions of either Theorem 2.3.1 or 2.3.2 are satisfied and the first

k votes are of the correct class, then the prediction accuracy of the Cesáro random forest will

always be greater than or equal to the classical random forest.

Proof. It is clear that if the classical random forest is 100% accurate then the Cesáro RF

will also be 100% accurate. Now suppose the Cesáro RF and classical random forest differ

on at least one vote. By assumption, we are guaranteed that the Cesáro RF will predict the

correct class. Hence, in the instance where the classical RF predicted a different class, the

Cesáro random forest will be correct. Thus we will either have greater or equal prediction

accuracy.

Although in practice one may not know the correct class, Corollary 2.3.1 can be seen as

useful in another way. In an implementation of the Cesáro Random Forest algorithm if newly

constructed trees do not contribute to the top 20% of best trees, then one can terminate the

algorithm. That is, we have motivated a stopping condition for the number of trees needed

in our ensemble. We formalize this in another corollary.

www.manaraa.com

27

Corollary 2.3.2. Given a Cesáro random forest with n trees, if any additional trees are

constructed but not placed in the top 20% of all trees then the vote of the Cesáro random

forest will be unchanged for a given observation.

Proof. Immediate consequence of Theorem 2.3.1.

In practice we can select some finite number of m trees, and if none of those are in the

top 20% of all trees it is reasonable to terminate. Specifically, if a user is unsatisfied with the

performance of n trees, then constructing n + m trees will have no effect on the prediction

accuracy unless the m additional trees are sequenced in the top 20% of all trees. Hence, a

cutoff to the number of trees can be determined for asymptotic stability and, from a practical

standpoint, can reduce computational time.

2.3.2 Numerical Results and Interpretation

In this section we provide numerical results to compare the classification accuracy of the

classical and Cesáro random forest, as well as compare different tree sequencing methods.

For each data set we used 3/4 for training and reserved 1/4 for testing. All experiments were

run using R, a statistical computing software. Recall that we only consider two-class data

sets.

2.3.2.1 Results on Traditional Data Sets

To evaluate the effectiveness of our Cesáro RF, ten traditional data sets were tested. The

data sets were acquired from the UCI (University of California-Irvine) repository (Bache and

Lichman), CRAN (Hendricks 2015), or collected by the authors. Table 2.1 summarizes the

data sets used.

To begin, we applied the Cesáro RF to each data set with different sequencing methods,

and varying number of trees. For comparison, we also ran the classical RF implementation.

www.manaraa.com

28

Table 2.1: Data set description for CRF experiments

Dataset Instances Features Source
Titanic 714 7 CRAN
Sonar 208 60 UCI
NBA Playoffs 683 92 Authors
Teaching Evaluations 101 5 UCI
Bupa Liver 345 7 UCI
Hill-Valley 606 100 UCI
Musk 476 167 UCI
Gisette 5999 5000 UCI
Medallion 2000 500 UCI
Arcene 200 10000 UCI

In Table 2.2, we give the mean of each of the ten trials from 500 trees. In addition we also

display the standard deviation of the classical random forest and the best ordering, where

the best ordering is the sequencing method, aside from the classical RF, that provided the

highest accuracy on average.

Table 2.2: Average accuracy % (500 trees, 10 trials) comparing CRF and RF

Cesáro RF Standard Deviation
Dataset 1 2 None Classical RF Best

Order
Classical RF

Titanic 81.7 80.4 80.6 80.3 2.7 2.9
Sonar 84.0 81.9 81.4 82.0 7.1 7.7
NBA Playoffs 94.0 94.9 94.0 95.1 1.3 1.3
Teaching Evaluations 72.3 71.2 69.4 76.2 7.3 9.2
Bupa Liver 73.5 73.5 70.5 72.5 3.1 3.0
Hill-Valley 56.8 55.1 53.1 56.3 1.7 2.0
Musk 89.5 87.4 86.1 89.2 1.6 1.8
Gisette 97.2 96.9 96.4 97.2 0.4 0.4
Medallion 72.8 69.5 66.5 69.2 1.1 1.2
Arcene 82.9 80.3 79.5 82.0 5.8 6.0

www.manaraa.com

29

From Table 2.2, we can draw some conclusions about the Cesáro random forest. To begin,

our method performs well relative to the classical random forest in 7 out of 10 data sets,

and ties in another one. Additionally, this displays the usefulness of our ordering scheme.

However, note that there exists a clear distinction in the two different orderings. Specifically,

Order 2 consistently outperformed Order 1, sorting by OOB error. The ineffectiveness of

Order 2 is possibly due to the small size of training data for these examples. Nonetheless, we

are confident in saying that ordering is better than not-ordering. Moreover, from observing

the standard deviations, it can be determined that the Cesáro random forest does indeed

provide more consistent results; thus providing the expected stability. Lastly, the Cesáro

random forest seems to work well on problems with a large number of features. This is

supported by large differences in the Medallion, Arcene, and Musk data sets.

2.3.2.2 Comparison of Methods

In Tables 2.3 and 2.4, we display results that compare the CRF and the RF with 100

trials with varying number of trees. We initially notice that:

1. For the RF there are minimal differences beyond the construction of 500 trees. That is,

percent changes between the number of trees are at most ±.2%.

2. The CRF, in some cases, still sees improvements of at most ±.4%.

From this one may conclude that, in most cases, the RF stabilizes after 500 trees, which

is the default parameter in most libraries. Additionally, the CRF still performs well relative

to the RF. This can be seen as a fact that as one constructs more trees, there is still a chance

that good trees will be constructed and placed near the beginning of the sequencing, and

thus further increasing accuracy.

Additionally, we notice that using 500 and 1000 trees appear to work better than 100

or 2000 trees. In particular, the usage of 500 and 1000 trees seemly works best with the

www.manaraa.com

30

Table 2.3: Average accuracy % of CRF with ordering 1 and various number of trees (100
trials)

Dataset 100 Trees 500 Trees 1000 Trees 2000 Trees
Titanic 79.4 79.8 79.9 79.9
Sonar 81.7 82.6 82.1 82.3
NBA Playoffs 94.1 94.3 94.4 94.2
Teaching Evaluations 76.2 76.6 76.9 76.9
Bupa Liver 71.9 72.1 72.2 72.1
Hill-Valley 56.0 56.2 56.2 56.2
Musk 89.1 89.5 89.5 89.5
Gisette 97.0 97.2 97.2 97.2
Medallion 69.6 72.1 72.3 72.2
Arcene 80.5 81.6 81.5 81.5

possibility that a number in between may be optimal. Although 100 and 2000 trees perform

well relative to the classical RF, in some cases they are not as reliable. This can be con-

tributed to the sensitivity of the Cesáro random forest. This sensitivity can be contributed

to the small number of trees, and the strength of the weight being applied. By constructing

just 100 trees and applying the Cesáro RF we are going to have a diverse range of trees

being built, and hence by our weighting scheme a large emphasis is placed on possibly worse

trees. However, this sensitivity can also be positive. This is in the sense that if we construct

excellent trees, then more weight can be placed on them and the bad trees at the middle

and end will have little to no impact on the voting outcome. This cannot be said for the

classical random forest since the good and bad trees are averaged together.

2.3.2.3 Number of Trees Comparison

Further studying the ineffectiveness of 100 and 2000 trees, we observe Table 2.5. From

this, we notice that ordering the trees may do more harm than good if too many or too

few trees are constructed. In this case, not-ordering is competitive with Order 1. Yet again

this can be attributed to the sensitivity of the Cesáro random forest. From this analysis, we

www.manaraa.com

31

Table 2.4: Average accuracy % of RF and various number of trees (100 trials)

Dataset 100 Trees 500 Trees 1000 Trees 2000 Trees
Titanic 79.6 79.6 79.8 79.8
Sonar 81.6 81.9 82.0 82.0
NBA Playoffs 94.9 95.0 95.1 95.1
Teaching Evaluations 76.0 76.5 76.9 76.8
Bupa Liver 72.5 72.7 72.5 72.6
Hill-Valley 56.0 56.2 56.0 56.2
Musk 88.9 89.1 89.0 89.1
Gisette 97.0 97.2 97.2 97.2
Medallion 67.4 68.9 69.2 69.3
Arcene 80.4 80.9 80.8 80.8

observe that the construction of trees between 500-1000 performs competitively compared

to that of the classical random forest.

Table 2.5: Average accuracy % of CRF with ordering 1 with 100 and 2000 trees (10 trials)

100 Trees 2000 Trees
Dataset Order 1 None Order 1 None
Titanic 78.5 78.9 79.9 79.5
Sonar 80.6 81.5 83.3 82.9
NBA Playoffs 94.2 95.5 95.3 95.1
Teaching Evaluations 72.7 71.5 70.0 72.7
Bupa Liver 69.8 72.8 72.3 71.4
Hill-Valley 57.1 56.2 55.1 55.6
Musk 88.1 86.0 87.7 88.2
Gisette 96.9 97.1 97.1 96.6
Medallion 70.3 61.9 73.0 67.6
Arcene 83.0 78.5 81.3 80.1

In regards to different sequencing schemes, we notice that Order 1, sorting by OOB error,

consistently provides the best accuracy. The ineffectiveness of Order 2 can be associated

with the lack of instances to train on. Indeed, for Order 2 by further subsetting the training

www.manaraa.com

32

data set, we are constructing each tree off a smaller number of instances. This problem can

most likely be remedied by obtaining a data set containing a very large number of instances.

2.3.2.4 Application of Ensemble Size Stopping Criteria

Here we provide an application of the stopping conditions on the ensemble size suggested

by Theorem 2.3.1 and Corollary 2.3.2. Table 2.6 considers such a scenario where we construct

a random forest on 100 trees with the Sonar data set.

An additional m ∈ {10, 15, ..., 35} trees are added to the RF to be considered for a

stopping rule. We successively append m trees until none of those m trees are placed in the

top 20%. Each trial is run 100 times with the aggregated results displayed. The tree range is

the minimum and maximum number of trees obtained by the 100 trials; whereas, the third

column is the median ensemble size of the 100 trials. It should be noted that the size of the

CRF and RF are the same.

From this, we immediately notice that the prediction accuracy of the CRF is greater

than the RF and the standard deviation is at most its counterpart. Additionally, using a

stopping rule of 20 trees we obtain the prediction accuracy of 83.1%. Although not the

highest, using this criteria to construct 720 trees can be seen as a trade-off between size and

accuracy versus building a random forest with 19070 trees.

Table 2.6: Sonar data set with a stopping criterion (100 Trials)

Additional Median Cesáro RF Random Forest
Trees Tree Range of Trees Avg. Acc. SD Avg. Acc. SD
10 [100 , 640] 140 82.3 5.2 82.0 5.3
15 [100 , 2050] 345 82.1 5.4 81.7 5.7
20 [130 , 4370] 720 83.1 5.1 82.6 5.1
25 [130 , 10000] 2745 82.3 4.9 82.0 5.2
30 [130 , 20000] 6205 83.6 6.0 83.4 6.2
35 [540 , 40000] 19070 83.7 6.1 83.3 6.1

www.manaraa.com

33

2.4 Conclusion

From our numerical results we recognize that our weighted methodology performs well

relative to that of the traditional random forest when applied to existing data sets. In

addition, as hypothesized, the sequencing of trees plays a vital role. This is easily seen by

observing the results of the traditional data sets. Additionally, from the traditional data

sets, the number of trees constructed is an important parameter.

Although the Cesáro random forest appears to be competitive to the classical RF it is

not without limitations. There are two obvious limitations that stem from our motivation.

The first being how to determine the sequencing of trees. If we do not accurately place the

best trees first we are not able to guarantee the effectiveness of the Cesáro RF; in fact, it is

probable that we will be significantly worse. The reason for such importance being placed on

sequencing is due to our next limitations, that is, the strength of the weights we are using.

As mentioned early most of the mass of the harmonic series is near the beginning, which

explains why the first few trees are so important, as is explained by Theorem 2.3.1.

Another limitation of using the CRF is that users lose the probability estimates of class

membership which can be useful for quantifying uncertainty. Hence, one may obtain a

higher prediction accuracy but will not be able to see probability estimates. In some cases,

the trade-off between prediction accuracy and information gained may be worthwhile.

In conclusion, we studied the effect of applying tree level weights by way of the Cesáro

averages to incorporate a sense of quasi-stability. The weights were in the form of the

harmonic series. From this we were able to prove theoretical results about this methodology.

Numerically we were able to provide evidence that this new weighting method compares

favorably to the traditional random forest algorithm as well as demonstrate the stability of

our results through reduced variance.

www.manaraa.com

34

CHAPTER 3. GENERALIZED WEIGHTING SCHEME FOR

BAGGED ENSEMBLES

3.1 Introduction

Bagging is an ensemble method for reducing variance of simpler learners with low bias

but high variance (Breiman, 1996a), but there is also evidence that simply reducing variance

is not always the best approach. In fact, it is reported that bagging works well with decision

stumps (Martínez-Muñoz et al., 2007), which have higher bias but lower variance than un-

pruned trees. And while the best known bagging approach, namely the random forest, uses

unpruned trees, its feature sampling has a similar effect. Namely, restricting the number of

features available to a tree will on the average increase the bias. This is analogous to meth-

ods that focus primarily on reducing bias. Boosted trees are a popular ensemble method

where the purpose of boosting is reduced bias, but implementations of boosted trees in-

clude one or more regularization parameters that are used to control the variance (Schapire,

2003). Similarly, deep neural networks are successful because adding layers to the network

reduces bias, but at the same time numerous regularization parameters are used to reduce

variance (Schmidhuber, 2015). Thus, in both approaches several tuning parameters are used

to control variance while the main idea of the method is to reduce bias. The success of such

highly tunable methods motivates the proposed new ensemble approach. While the main

idea of bagging is to reduce variance, we add tunable weights to the ensemble that allows

for simultaneously controlling the bias.

In the literature, there are various ways to increase prediction accuracy of bagged en-

sembles, including feature sampling and model stacking (Bryll et al., 2003). Others have

www.manaraa.com

35

considered giving weights to different votes in specific concepts (Lacasse et al., 2010). How-

ever, a general weighting scheme that can be tuned to fit data does not exist. Namely, there

is not a parameter, p, such that we can alter values of p to change the strength of a weighted

vote. As mentioned above, having such tunable parameters has been found to be impor-

tant for other ensemble methods such as boosted trees (Freund and Schapire, 1996), which

motivates the potential usefulness of the new approach.

In this chapter, we will generalize bagged ensemble learning to a weighted vote by considering

different ways of averaging. For the duration for this chapter, we refer to the notation

provided in Table 3.1.

Table 3.1: Summary of notation

Notation Definition
∆ Data set with binary classes
δi ith bootstrapped data set from ∆
vi Vote for the class of a particular observation
n Number of models in ensemble
Γ Ensemble of models
γi ith predictive learner
wi ith weight
ci class of observation i
p ∈ [0,∞) tunable parameter 1
α ∈ [0, 1] tunable parameter 2

3.2 Methodology

3.2.1 Weighting Scheme

For an ensemble of n models, we denote this as Γ =
n⋃

i=1
γi where each γi is some predictive

learner. Given a learning problem, once each model provides a vote, vi, we apply weights of

the form:

www.manaraa.com

36

wi =

n∑
j=1

1
jp

i = 1

n∑
j=i

1
jp

+
i−1∑
j=1

α

jp
i ≥ 2

(3.1)

where n is the ensemble size and α ∈ [0, 1] and p ∈ [0,∞) are tuning parameters to be

discussed further below. It follows that for a given observation k, we have the predicted class

to be:

ck =

n∑

i=1
wivi

n∑
i=1
wi

 (3.2)

where [·] is the nearest integer function.

Thus when α = 1 we have that all weights are equal and we have an unweighted ensemble.

Fixing α = 1, we obtain

wi≥2 =
n∑

j=i

1
jp

+
i−1∑
j=1

1
jp

=
n∑

j=1

1
jp

= w1. (3.3)

Hence any pure bagged ensemble can be seen as a special case of our weighted ensemble

method. If we would further restrict the ensemble to use decision trees with feature sampling

at each node, we obtain the random forest.

Bagged ensembles reduce the variance of the base classifiers, which is what the proposed

weighted ensemble will do if α = 1. For α ∈ [0, 1), the effect is more complex, but in the

extreme case, if (almost) all the weight is given to the single best model then bias would

be reduced (and variance increased). This is therefore a more flexible ensemble method.

Specifically, the p parameter allows us to tune the rate of decrease for our weights. This is

readily seen by observing the function f : R→ R where f(x) = 1/xp which can be considered

an approximation to
n∑

j=i

1
jp
. In Figure 3.1, we provide such a visual using varying values of

www.manaraa.com

37

p. Indeed, we notice that small changes in p results in various decreases in the function, and

hence our weights. Analogously, as p → ∞ we allow more weight to be placed towards the

beginning and less towards the end. By doing this, we advertently give higher importance

to the first few learners.

0

1

2

3

0.0 2.5 5.0 7.5 10.0

X−axis

Y
−

ax
is

Functions

x0.00

x0.50

x0.25

x0.75

x1.00

x1.25

x1.50

Figure 3.1: Comparison of p-values for f(x) = 1
xp

Moreover, we may consider
i−1∑
j=1

α

jp
to be a regularization term with a tunable constant α,

where maximum regularization is achieved with α = 1. A direct benefit of α is that it allows

each weight to be equal and hence obtaining a pure bagged ensemble. We take α ∈ [0, 1]

since for α /∈ [0, 1] we no longer have a decreasing function. With this, we establish our

tunable weight scheme with two parameters that can be applied in any bagged ensemble

setting.

www.manaraa.com

38

3.2.2 Weighted Bagged Ensemble Learning

Like any weighting scheme, determining where to apply the weight is of utmost impor-

tance. With an ensemble of γi models, how do we sequence each model to allow the best

models to be given the most weight? Our solution to this problem is to sequence our models

by their out-of-bag error; this is the most natural way of determining the quality of a learner.

(Other methods may be to use cross-validation or a second training set.) With this, we have

our complete learning algorithm. Algorithm 2 is the pseudo-code for our learning procedure.

Algorithm 2 Weighted Bagged Ensemble Learning
Input n - Size of ensemble, ∆ - Training data set, Λ - Testing data set, predictive learner
Output Vector of predictions

1: for i from 1 to n do
2: Generate bootstrapped data set, δi, from ∆
3: Construct model γi from δi

4: Store out-of-bag error for γi

5: Test γi on Λ to receive votes for each observation
6: end for
7: Sequence Γ =

n⋃
i=1

γi by out-of-bag error
8: Compute vector of weights using equation (2)
9: for each observation j do

10: Compute cj =
 n∑

i=1
wivi

/
n∑

i=1
wi

11: Store cj

12: end for
13: return Vector {cj}

For our implementation, in the event of a tie, the class will be labeled zero. In other

applications one may consider allowing the class to be chosen at random. The predictive

learners, γi, considered can be any learner of choice. Though as previously stated, since

bagging reduces variance it may be expected that any low bias, high variance model will be

the most improved (Fumera et al., 2005). On the other hand, for α < 1 this is not a pure

www.manaraa.com

39

bagging approach and in the extreme case of setting the parameters such that most of the

weight is on one model, this would not be the case.

3.3 Numerical Results

In this section, we provide numerical results for our weighted ensemble scheme by testing

on traditional and synthetically generated data sets. We consider ensembles containing each

of the following:

1. CART (Classification and Regression Tree) (Breiman et al., 1984)

2. Naïve Bayes Classifier (Rish, 2001)

3. K-Nearest Neighbors (KNN) with k =
√
of observations (Cover and Hart, 1967)

4. Support Vector Machine (SVM) with a linear kernel (Cortes and Vapnik, 1995)

5. Neural Network with one hidden layer and ten nodes (Rosenblatt, 1958)

6. Logistic Regression (Cox, 1958)

We consider these models due to the fact that they are six different learners and each posses

situations in which they perform well. In all, we hope to establish criteria in which one

would consider this weighted ensemble methodology.

3.3.1 Traditional Results

We first apply our weighted ensemble method to traditional data sets as listed in Table

3.2. That is, data sets which are commonly used in the data mining community. These were

collected from a combination of UCI (University of California Irvine) repository (Bache and

Lichman, 2013), CRAN (Hendricks, 2015) or created by the authors.

www.manaraa.com

40

Table 3.2: Traditional data sets for general weighted bagged ensemble experiments

Data Set Observations Features Source
Teaching Evaluations 101 5 UCI
LSVT Voice Rehab 126 310 UCI
Sonar 208 60 UCI
Heart (Statlog) 267 44 UCI
Haberman 306 3 UCI
Bupa Liver 345 7 UCI
Ionosphere 351 34 UCI
Musk 476 167 UCI
Breast Cancer 569 30 UCI
Hill-Valley 606 100 UCI
NBA Playoffs 683 92 Authors
Titanic 714 7 CRAN
Diabetes Pima Indians 768 8 UCI
German Credit Card 1000 25 UCI
Medallion 2000 500 UCI
Musk Updated 7074 167 UCI
Polish Bankruptcy 10503 64 UCI
HTRU 17898 8 UCI
Taiwan Credit Card 30000 24 UCI
Online News Popularity 39644 60 UCI

For all experiments we consider p ∈ {0, .25, .50, .75, 1.0, 1.5, 2.0}, n ∈ {100, 500, 1000}

and α = 0. In later trials we adjust our α value. Furthermore, to avoid any ambiguity, for

each data set we utilize 3/4 for training and holdout the remaining 1/4 for testing. Given

each data set, we run 10 trials. In all, we hope to establish an optimal ensemble, robust

default parameters, and preferred types of learning models.

Moreover, we compare our results to two benchmarks: pure bagging and the random

forest. This is a sensible comparison since we want to understand if and when using weights

outperforms pure bagging, and the random forest is the bagged ensemble of choice for most

machine learning applications.

www.manaraa.com

41

3.3.1.1 Determining optimal ensemble size and sequencing method

For our first experiment our objective is to determine the optimal ensemble size, be that

100, 500, or 1000 along with a preferred sequencing method. Displayed in Table 3.3 are the

results from our first experiment.

We display the highest averages obtained across all models as well as the corresponding

ensemble size that produced the maximal accuracy. Moreover, in addition to sequencing by

out-of-bag error, we report two other methods: None and Pure Bagging. We take None to

mean there is no sequencing of the models and that weights are applied to each model in its

construction order. Whereas Pure Bagging is the usual majority vote; that is, each vote is

given equal priority as in the random forest. From Table 3.3, important takeaways are that:

1. The new weighted ensemble (including pure bagging) performs well relative to the random

forest in 14 out of 20 data sets.

2. Of those 14 data sets, sequencing by the out-of-bag error to determine model quality was

the better ordering method 9 times.

3. An ensemble of size 500 or 1000 provides the highest averages more often than an ensemble

of 100 models.

In some cases, we outperform the random forest by over four percentage points as seen

in the Teaching Evaluation, LSTV and Haberman data sets. Moreover, one may notice

that data sets where we heavily underperform have a large number of features compared to

observations. Indeed this holds true for the: Musk, Musk Updated, Hill-Valley, and NBA

data sets with the Bupa Liver data set being the exception. Additionally shown is that an

ensemble of size 500 or 1000 is preferred over one of size 100. However in the cases where

we are competitive to the random forest an ensemble of size 500 may be preferable.

www.manaraa.com

42

Table 3.3: Prediction accuracy (%) from 10 trials. Average accuracy ± one standard devia-
tion comparing weighted bagging, pure bagging, and the random forest

Sequencing Method Benchmarks
Data Set OOB None Size Pure Bagging Random Forest
Teaching Evaluations 79.6±6.0 79.2±6.6 1000 71.5±7.1 77.7±9.7
LSVT Voice Rehab 86.6±4.7 86.6±5.5 1000 86.9±4.6 85.2±5.1
Sonar 84.0±5.4 83.7±4.3 100 77.1±5.1 82.5±4.9
Heart (Statlog) 82.1±4.2 82.2±4.4 500 82.0±4.6 81.0±4.6
Haberman 77.9±7.0 77.4±5.0 500 75.9±5.2 73.7±4.5
Bupa Liver 67.8±4.9 67.4±4.6 1000 67.7±4.6 72.2±4.3
Ionosphere 93.6±2.2 93.6±2.1 100 90.6±3.2 93.4±2.2
Musk 89.0±2.5 88.2±2.5 500 85.5±5.6 90.6±1.9
Breast Cancer 97.1±1.4 96.9±0.82 1000 94.8±2.3 96.0±1.7
Hill-Valley 99.5±0.0 99.5±0.0 1000 99.8±0.0 58.1±3.5
NBA Playoffs 98.0±1.2 97.8±1.2 500 97.8±1.1 94.7±1.7
Titanic 78.6±1.8 78.6±3.7 500 78.7±1.7 80.2±2.6
Diabetes Pima Indians 76.6±2.1 76.6±3.0 500 76.5±2.6 76.3±2.7
German Credit Card 81.4±1.6 81.4±1.5 100 81.4±1.5 80.1±1.9
Medallion 67.0±2.7 65.7±3.0 1000 65.7±3.1 69.0±2.3
Musk Updated 94.8±0.3 94.8±0.3 1000 94.9±0.0 97.4±0.1
Polish Bankruptcy 95.8±0.1 95.8±0.0 500 96.3±0.0 96.1±0.1
HTRU 98.1±1.1 98.0±0.9 500 98.1±1.0 97.9±0.5
Taiwan Credit Card 82.1±0.7 81.1±1.2 100 82.2±0.4 81.8±0.6
Online News Popularity 65.2±0.7 65.2±1.2 1000 65.2±1.2 67.3±0.8

In comparison with pure bagging, there does not exist a data set in which we statistically

differ when using a weighted ensemble. However, there are instances where, on average, we

can perform much higher. Statistically we are able to outperform the random forest in the

Hill-Valley and NBA Playoffs data set. Across most data sets, the standard deviation is

generally high, and although we are able to beat pure bagging and the random forest on

average, there is no statistical difference with our weighted ensemble scheme in 18 out of 20

cases.

In terms of the sequencing, it is of no surprise that ordering our models by OOB error is

better than not sequencing. In some cases not ordering and applying the weighted scheme

www.manaraa.com

43

is better; this can most likely be attributed to high variability in the construction of each

model. The same can be said for giving each model equal weight (pure bagging).

In all, it may be concluded that an ensemble containing anywhere from 500-1000 models

may be sufficient. Though one should be cautious about the computational affects of in-

creasing the size. From these observations, we do not yet make assertions about preferred

p-values or a recommended model.

3.3.1.2 Determining existence of optimal p and α parameters

The next objective is to analyze the effect of an α parameter. To determine the signif-

icance of this parameter as well as its relationship with p we will take the Bupa Liver and

Sonar data set and attempt to find an optimal p and α value. In finding the optimal to

near-optimal parameters, we hope to resolve two hypotheses:

1. Can choosing specific (optimal) p and α significantly increase prediction accuracy?

2. Will these values be robust to any bootstrapped data?

For this experiment, we will use an ensemble of size 500, and sort by the out-of-bag error.

From Table 3.3 we see that in one data set (Bupa Liver) we are unable to outperform the

random forest, while in the other (Sonar) we do. In Table 3.4, we report five values: the

accuracy obtained from a simple majority vote (pure bagging), the minimum and maximum

prediction accuracy, and the α and p values which corresponds to the maximum value.

To determine an optimal p and α value a grid search was performed over 1681 possible

combinations. Namely p ∈ {0, .05, .10, .15, ..., 2.0} and α ∈ {0, .025, .050, .075, ..., 1.0}.

With these values, we are now able to outperform the random forest in the Bupa Liver

data set with an SVM. Moreover, in the Sonar data set we still were able to provide a higher

accuracy than the random forest. In both cases, the parameters appear to have little affect

www.manaraa.com

44

on the CART. Another noticeable pattern is the gap between the minimum and maximum

value for each model. Indeed, from this we can deem that our weighted scheme has an impact

on the final prediction accuracy and that finding optimal p and α parameters can yield high

dividends.

One key observation is that for most cases, p = 0 =⇒ α > 0, and α = 0 =⇒ p > 0.

This can be seen as a further analogy to our bias variance trade-off. Namely when α = 0 we

have a pure bagging scheme (variance reduction) and in those cases we obtain the highest

accuracy. Whereas for p > 0 we are simply reducing bias and obtain the highest accuracy

when α = 0.

Moreover, we see that our p and α values are indeed robust. That is, in each both trials,

generally higher p-value is preferred. The exception would be in the Sonar data set on trial

2 when using NB and SVM. It should be noted, that maximum values obtained are different

due to the randomness of the bootstrapped data each learner was constructed on. However,

this is not a concern since our purpose is to establish a connection between p and α values.

3.3.1.3 Determining default p-value

Having established that a small α value is preferred, can we decide on a recommended

p-value that is robust to each ensemble size? In the following Figure 3.2 we plot a histogram

of the p-values where we outperformed the random forest.

It is clear that each ensemble size prefers a different p-value. The reasoning can be

explained as follows. First when creating a large ensemble, there may be substantial more

bad learners hence by using a smaller p-value each model is given near same weight. On the

other hand, if the ensemble contains many good learners then a very high p-value is desired

as to allow the best models to have the most weight. Namely for an ensemble of size 100 a

high p-value is preferred and for size 500 a smaller one is better. The biggest difference is

www.manaraa.com

45

Table 3.4: Test optimal values (p and α)

Optimal
Data Set Trial Model Minimum Maximum p α Pure Bagging

Bupa Liver 1

CART 70.1 71.2 0 0.025 71.2
NB 65.5 70.1 1.85 0 66.7
KNN 59.8 67.8 1.75 0 64.4
Log. Reg. 67.8 70.1 0 0.175 69.0
SVM 67.8 69.0 0 1.0 69.0
N. Network 64.4 67.8 1.55 0 65.5

2

CART 67.8 70.1 0 0.625 70.1
NB 65.5 74.7 1.95 0 66.7
KNN 59.8 66.7 1.9 0 64.4
Log. Reg. 63.2 66.7 1.80 0 63.2
SVM 74.7 78.2 1.75 0 77.0
N. Network 70.1 72.4 1.85 0 70.1

Sonar 1

CART 61.5 65.4 0 0.025 65.4
NB 71.2 75 1.75 0 73.1
KNN 80.8 84.6 1.75 0 80.8
Log. Reg. 73.1 76.9 0 1.0 76.9
SVM 78.8 78.9 2.0 0 80.8
N. Network 82.7 84.6 1.95 0 82.7

2

CART 65.4 69.2 1.95 0 67.3
NB 67.3 71.2 0 0 67.3
KNN 69.2 78.8 1.7 0 69.2
Log. Reg. 59.6 65.4 1.2 0.075 63.5
SVM 69.2 76.9 0.95 0 76.9
N. Network 82.7 86.5 1.90 0 84.6

that a p-value of 2.0 is clearly optimal for a small ensemble and a p-value of 0 is optimal for

a size 500 ensemble.

In total from both these plots, one may loosely say that a default p-value should be near

.75, and that by proper tuning via say, grid-search, one may find an optimal p.

www.manaraa.com

46

0

5

10

15

0.00 0.25 0.50 0.75 1.00 1.50 2.00

p−value

C
ou

nt

Ensemble
Size

100

500

1000

Figure 3.2: Comparison of p-values that outperform the random forest

3.3.1.4 Determining model choice

A natural question to ask is, does the new ensemble approach work better with some of

these methods? In this section, we attempt to provide an answer.

In Table 3.5 we provide a binary indicator where one means the model outperformed the

random forest and zero where we did not. From this we see that the number of cases where

CART is greater than the others with KNN and SVM following closely.

However, for the 20 data sets, we notice that there are cases in which each model will

perform well within the weighted ensemble.

www.manaraa.com

47

Table 3.5: Learners that outperform the random forest

Data Set CART Naïve Bayes KNN Log. Reg. SVM N. Network
Teaching Evaluations 0 1 0 0 1 0
LSVT Voice Rehab 1 1 1 0 1 0
Sonar 0 0 1 0 0 1
Heart (Statlog) 1 1 1 0 1 1
Haberman 1 1 1 1 0 0
Bupa Liver 0 0 0 0 0 0
Ionosphere 1 0 0 0 0 0
Musk 0 0 1 0 0 0
Breast Cancer 0 0 1 0 1 0
Hill-Valley 0 0 0 1 1 1
NBA Playoffs 0 0 0 0 1 0
Titanic 0 0 0 0 0 0
Diabetes Pima Indians 1 1 1 1 1 0
German Credit Card 1 1 1 1 1 0
Medallion 1 0 0 0 0 0
Musk Updated 0 0 0 0 0 0
Polish Bankruptcy 1 0 0 0 0 0
HTRU 0 0 0 0 0 1
Taiwan Credit Card 1 0 0 0 0 0
Online News Popularity 0 0 0 0 0 0
Sum Total 9 6 8 4 8 4

3.3.1.5 Computation time

For insights into computational efficiency we provide results for a subset of our experi-

ments in Figure 3.3. For this visualization, we only display: Teaching Evaluation, Medallion,

and Online News Popularity. These are considered since they are the smallest and largest

data sets with Medallion being a middle ground for a relative comparison. The CPU being

used is two 2.6 GHz 8-Core Intel E5-2640 v3 processors.

For our figure we plot our seven models and report a transformed value of time (log(Time))

in seconds for constructing 1000 models. For our smallest data set, we were able to construct

1000 models in a matter of seconds. Even for the Medallion data set computational times

were modest across all models. However, for our largest data set, Online News Popularity,

KNN and SVM cost the most computationally. Namely constructing 1000 models took ap-

www.manaraa.com

48

Teaching
E

valuation
M

edallion
O

nline N
ew

s

CART KNN Log. Reg. NB NNET RF SVM

0

4

8

12

0

4

8

12

0

4

8

12

Model

lo
g(

T
im

e)
 in

 s
ec

on
ds

Figure 3.3: Comparison of run times for 3 data sets

proximately e12 ≈ 162, 755 seconds apiece. Hence in practice for such a large data set, other

models may be considered.

3.3.2 Synthetic Results

By testing synthetic data sets, we hope to provide insights into when our weighted bagged

ensemble is competitive to the random forest. Namely we consider data sets with the fol-

lowing properties: sparsity, spuriosity, noise, and ratio of observations to features. To study

this we alter four previously tested data sets each for a specific purpose, that is,

1. Breast Cancer : Sparsity

2. Heart (Statlog): Outliers

www.manaraa.com

49

3. Haberman: Noise

4. German Credit Card: Ratio of observations to features

By modifying these four data sets, we are able to test each condition while having a

baseline as comparison. For the purposes of this section, we restrict our ensemble size to 500

learners and only sequence by the out-of-bag error as per the results of Table 3.3. However,

the six different learning models are still utilized.

3.3.2.1 Effect of sparsity

Given the Breast Cancer data set with 569 observations and 30 features, we randomly

replace entries with zero. We do this for five different levels; that is, we randomly replace

{10, 20, 40, 60, 80}% of the data set with zeros. For each sparsity level, we run 10 trials where

in each trial we replace a different random sample with the given percentage of zeros.

In Table 3.6 we report our findings. One will notice there is a 0% column; this represents

our baseline, that is, the results obtained from the original data set without any altercations.

Table 3.6: Breast data set with various levels of sparsity (average ± one standard deviation
%)

Sparsity Level
Model 0% 10% 20% 40% 60% 80%
CART 94.3±2.7 93.6±1.8 92.7±1.1 89.4±2.5 81.9±3.6 75.2±2.4
NB 94.8±1.8 94.5±1.7 94.2±1.1 92.3±2.4 89.6±2.9 84.8±1.8
KNN 96.7±3.5 90.8±1.5 86.4±1.2 77.4±2.2 71.6±0.0 72.2±3.6
Log. Reg. 95.6±1.2 94.1±2.1 90.8±2.0 86.9±2.3 80.8±2.2 73.6±4.0
SVM 97.2±1.4 93.4±2.2 90.6±2.0 86.6±2.9 82.4±2.1 76.6±2.8
N. Network 91.6±2.1 89.1±4.9 83.2±4.4 75.1±3.9 67.0±3.4 66.1±3.6
RF 96.0±0.9 95.4±0.1 94.5±0.8 93.2±0.6 92.0±0.6 88.0±1.3

From this, we are able to see that the random forest consistently outperforms our weighted

ensemble scheme. In fact, on average, our prediction accuracy is much worse. This can likely

www.manaraa.com

50

be attributed to the learners chosen in our ensemble, and the randomness associated to the

random forest to learn different parts of the data. Moreover the rate of decrease in prediction

accuracy of the random forest is much slower than any of the three models.

3.3.2.2 Effect of spurious data points

Next we analyze the Heart data set which contains 267 observations and 45 features.

Here, we add synthetic observations with random values generated between zero and one

along with a class value. Specifically to the Heart data set, {25, 75, 125}% more rows are

added. The results are summarized in Table 3.7 where column 0% is considered our baseline

comparison.

Table 3.7: Heart data set with various levels of spurious data points (average ± one standard
deviation %)

Spuriosity Level
Model 0% 25% 75% 125%
CART 82.1 ± 4.4 74.0 ± 5.4 68.0 ± 4.9 64.7 ± 4.5
NB 79.7 ± 4.3 74.3 ± 3.1 71.5 ± 3.0 65.2 ± 3.0
KNN 79.9 ± 4.3 71.1 ± 2.7 66.5 ± 4.3 62.2 ± 4.0
Log. Reg. 75.8 ± 3.8 67.1 ± 3.4 64.7 ± 2.6 59.5 ± 2.3
SVM 80.0 ± 5.2 68.0 ± 4.5 64.4 ± 3.5 60.1 ± 2.1
N. Network 80.3 ± 6.1 71.2 ± 4.7 64.7 ± 3.2 62.1 ± 3.7
RF 80.9 ± 4.7 73.5 ± 1.4 67.1 ± 0.9 64.5 ± 0.9
NB-Not Bagged 75.1 ± 4.3 72.5 ± 4.5 66.8 ± 3.3 63.8 ± 2.1

The results above support the claim that under the presence of spurious data points we

would expect this weighted ensemble scheme to hold form. Indeed, the naïve Bayes classifier

consistently provides a higher average than that of the random forest. Hence a fair statement

is that a weighted ensemble of the correct classifier may outperform the random forest in the

presence of spurious observations. Moreover, when comparing the bagged ensemble of NB

to that of a non-bagged naïve Bayes, we see that there is a significant increase in prediction

www.manaraa.com

51

accuracy. This further supports the benefit a bagged ensemble as opposed to a single model

approach.

3.3.2.3 Effect of noise

The Haberman data set containing 306 observations and 3 features is used to provide

insights into how we perform with the addition of noisy features. To understand this, we

adjoin columns with random values generated between zero and one; that is, {50, 100}%

more columns are added. Table 3.8 contains our summary.

Table 3.8: Haberman data set with various levels of noise (average ± one standard deviation
%)

Noise Level
Model 0% 50% 100%
CART 76.8 ± 5.0 76.8 ± 4.5 75.3 ± 4.1
NB 76.4 ± 3.7 75.8 ± 3.7 74.9 ± 4.7
KNN 77.9 ± 4.0 76.5 ± 3.3 75.7 ± 3.6
Log. Reg. 75.6 ± 4.6 73.9 ± 4.8 71.0 ± 5.6
SVM 72.1 ± 4.5 73.6 ± 2.8 74.0 ± 3.7
N. Network 74.2 ± 3.1 73.9 ± 4.8 71.0 ± 5.6
RF 73.7 ± 3.5 72.3 ± 1.6 72.6 ± 2.0
KNN-Not Bagged 74.9 ± 2.0 73.8 ± 1.2 73.6 ± 2.1

With the addition of noisy features, we still perform competitively to the random forest.

From our table, it is clear that an ensemble of the k-nearest neighbors will allow us to

maximize our potential. However, the change in accuracy in the random forest from 0%

to 100% is 1.3 which is less than the KNN. Hence the random forest could be considered

to be more invariant to noise than the KNN ensemble. Additionally, when comparing with

a non-bagged KNN, we notice how much of improvement is obtainable with our weighted

ensemble. Thus, we further defend the usefulness of a bagged ensemble approach, and in

particular, our weighting scheme.

www.manaraa.com

52

3.3.2.4 Effect of ratio of observations to features

Lastly, we consider the German Credit Card data set that has 1000 observations and 25

features. To test the impact of the ratio of observations to features, we randomly subset

rows until our desired fraction is obtained. We test ratios of the form {40:1 (original), 20:1,

10:1, 5:1}.

Table 3.9: German Credit Card data set with varying ratios (average ± one standard devi-
ation %)

Ratio (Obs. to Feats.)
Model 40:1 20:1 10:1 5:1
CART 81.0 ± 1.9 81.0 ± 2.9 80.3 ± 6.8 82.8 ± 9.1
NB 77.5 ± 2.1 78.4 ± 2.4 78.3 ± 5.2 76.9 ± 13.8
KNN 80.9 ± 1.9 80.7 ± 3.3 80.0 ± 5.5 83.1 ± 8.6
Log. Reg. 79.5 ± 1.3 76.6 ± 2.8 75.0 ± 3.4 60.1 ± 2.1
SVM 78.5 ± 2.5 78.6 ± 4.3 75.7 ± 3.4 75.7 ± 5.9
N. Network 78.0 ± 1.5 77.2 ± 4.1 77.9 ± 4.9 76.6 ± 2.7
RF 80.1 ± 1.9 79.0 ± 2.2 77.0 ± 3.6 78.6 ± 8.2

From Table 3.9 we are still able to attain an higher prediction accuracy than the random

forest with CART and KNN as candidate models for the ensemble. From the results, there

does not appear to be an obvious pattern between the ratios and prediction accuracy. This is

readily seen since we obtain the two maximal values in the 5:1 scenario. This may possibly

associated to the fact that there were very few good models due to the lack of training

observations and a higher p-value was chosen.

3.4 Conclusion

In this work we present a tunable weighting method applied to bootstrapped aggregated

ensembles. This weighted scheme has the potential to outperform a pure bagged ensemble

www.manaraa.com

53

as well as the random forest. We support these claims by experimental results on traditional

data sets and synthetically generated data sets.

Although, we usually can outperform pure bagging, and in some cases, we can out perform

the random forest, our weighted scheme is not without faults. Namely, there are time

considerations in effectively choosing α and p parameters aside from a grid search. Moreover,

by introducing weights, there is the possibility of increase overfitting on for the model, that

is, unlike for pure bagging it is now possible to decrease bias to the extent that the benefits

are outweighed by the increased variance.

www.manaraa.com

54

CHAPTER 4. WBENSEMBLER: AN R PACKAGE FOR

WEIGHTED BAGGED ENSEMBLE LEARNING

4.1 Introduction

In the context of predictive modeling, ensembles refer to the collection of (potentially)

different learning models such as: decision trees, support vector machines, logistic regres-

sions, etc. to form a single strong learner which is (hopefully) more accurate than each

individual component. One such collection is a bootstrapped aggregated (bagged) ensemble

that is, learning models that are generated from a bootstrapped data set. Ensembles such

as these are widely applicable and very popular with the most well known being the random

forest (Breiman, 2001).

Nevertheless another ensemble method, boosting, also has wide spread popularity, and

seems to be winning a variety of data science competitions leaving the random forest to be

seemingly forgotten. One aspect that existing boosting models have that bagged ensembles

do not are tunable parameters. In xgboost, a popular boosting package, there exists a variety

of parameters than users can alter to better fit data sets (Chen et al., 2018). However, as of

now there is not a package that allows any tunability for general bagged ensembles.

Due to this gap, the authors have developed a packaged call wbensembleR that provides

parameters for added flexibility to bagged ensembles; namely, we allow for the simultaneous

control of bias and variance. This framework considers added flexibility in the form of

weighted votes. In particular, we consider these weights to be of the form:

https://CRAN.R-project.org/package=xgboost

www.manaraa.com

55

wi =

n∑
j=1

1
jp

i = 1

n∑
j=i

1
jp

+
i−1∑
j=1

α

jp
i ≥ 2

where n is the ensemble size and p ∈ [0,∞) and α ∈ [0, 1] are tuning parameters to be

discussed further below. It follows that for a given observation, we have the predicted class

to be which ever class obtains the most weight.

Observe that in the case where α = 1 we have that all weights are equivalent that is,

wi = wj for all i, j. Indeed, fixing α = 1, we obtain

wi≥2 =
n∑

j=i

1
jp

+
i−1∑
j=1

1
jp

=
n∑

j=1

1
jp

= w1

Hence any pure bagged ensemble can be seen as a special case of our weighted ensemble

method. If we would further restrict the ensemble to use decision trees with feature sampling

at each node, we obtain the random forest.

Bagged ensembles reduce the variance of the base classifiers, which is what the proposed

weighted ensemble will do if α = 1. For α ∈ [0, 1), the effect is more complex, but in the

extreme case, if (almost) all the weight is given to the single best model then bias would

be reduced (and variance increased). This is therefore a more flexible ensemble method.

Specifically, the p parameter allows us to tune the rate of decrease for our weights. This

is readily seen by observing the function f : R → R where f(x) = 1/xp which can be

considered an approximation to
n∑

j=i

1
jp
. Analogously, as p→∞ we allow more weight to be

placed towards the beginning and less towards the end. By doing this, we advertently give

higher importance to the first few learners.

Moreover, we may consider
i−1∑
j=1

α

jp
to be a regularization term with a tunable constant α,

where maximum regularization is achieved with α = 1. A direct benefit of α is that it allows

each weight to be equal and hence obtaining a pure bagged ensemble. We take α ∈ [0, 1]

www.manaraa.com

56

since for α /∈ [0, 1] we no longer have a decreasing function. With this, we establish our

tunable weight scheme with two parameters that can be applied in any bagged ensemble

setting.

4.2 Overview of wbensembleR

For the duration of this chapter, we will utilize ToothGrowth, a built-in data set with 60

observations, 2 features, and binary classes. Although not an large data set, this serves its

purpose as a demonstration guide. However, in practice, one would use wbensembleR on

much larger data sets. Below is a summary of ToothGrowth.

> str(ToothGrowth)

’data.frame’: 60 obs. of 3 variables:

$ len : num 4.2 11.5 7.3 5.8 6.4 10 11.2 11.2 5.2 7 ...

$ supp: Factor w/ 2 levels "OJ","VC": 2 2 2 2 2 2 2 2 2 2 ...

$ dose: num 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 ...

> summary(ToothGrowth)

len supp dose

Min. : 4.20 OJ:30 Min. :0.500

1st Qu.:13.07 VC:30 1st Qu.:0.500

Median :19.25 Median :1.000

Mean :18.81 Mean :1.167

3rd Qu.:25.27 3rd Qu.:2.000

Max. :33.90 Max. :2.000

> head(ToothGrowth)

www.manaraa.com

57

len supp dose

1 4.2 VC 0.5

2 11.5 VC 0.5

3 7.3 VC 0.5

4 5.8 VC 0.5

5 6.4 VC 0.5

6 10.0 VC 0.5

One can view wbensembleR as a wrapper or companion to Max Kuhn’s caret in the sense

that our weighted scheme works with the outputs of caret::train() and caret::predict.train()

(Kuhn et al., 2017). Namely, we sequence our models by out of bag error produced by

caret::train() and weigh the votes of caret::predict.train().

Our package consists of the following functions:

1. bagged.ensembler()

2. predict.ensemble()

3. weights()

4. matrix.weights()

Each function has various input and output structures. In practice, the most useful are

bagged.ensembler() and predict.ensemble(). The other commands can be seen as helper

functions; that is, commands that assist the main functions in doing their computations.

Additionally since our package can be viewed as an extension of caret, every model, in caret

is available for constructing a bagged ensemble. Here we give an overview of the helper

functions and in the following section, we further describe our main functions.

https://CRAN.R-project.org/package=caret
https://CRAN.R-project.org/package=caret
https://CRAN.R-project.org/package=caret

www.manaraa.com

58

The two helper functions are embedded in the predict.ensemble() operation. weights()

simply outputs a vector containing the calculated weight for a given length n, p and α value

where n should be the size of the bagged ensemble.

weights <- function(n = NULL, p = NULL, alpha = NULL)

> weights(n = 5, p = .25, alpha = .75)

[1] 5.0 4.5 4.0 3.5 3.0

An extension of weights() is matrix.weights(). Whereas weights() simply gives a

vector, matrix.weights() constructs a matrix where each column corresponds to a weighted

sequence. Namely, this is used when either p or α are vectors of length greater than one.

The arguments of both functions are the same, but have a different structural output. The

following is an example of the generated output.

> matrix.weights(n = 5, p = 0:2, alpha = seq(0,1,.5))

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

p 0 1.0000000 2.0000000 0.0 1.000000 2.0000000 0 1.000000

alpha 0 0.0000000 0.0000000 0.5 0.500000 0.5000000 1 1.000000

weight1 5 2.2833333 1.4636111 5.0 2.283333 1.4636111 5 2.283333

weight2 4 1.2833333 0.4636111 4.5 1.783333 0.9636111 5 2.283333

weight3 3 0.7833333 0.2136111 4.0 1.533333 0.8386111 5 2.283333

weight4 2 0.4500000 0.1025000 3.5 1.366667 0.7830556 5 2.283333

weight5 1 0.2000000 0.0400000 3.0 1.241667 0.7518056 5 2.283333

[,9]

p 2.000000

www.manaraa.com

59

alpha 1.000000

weight1 1.463611

weight2 1.463611

weight3 1.463611

weight4 1.463611

weight5 1.463611

As we can see aside from the first two rows, which states p and α, we obtain the out-

put of weights() as columns. This function is necessary to aid in the computations of

predict.ensemble(). As implied by our weighted scheme, we notice that when α = 1, we

have that all weights are equivalent and hence we no longer have a weighted average but a

typical arithmetic mean.

Although these functions assist the main ones in their computations, they are still useful

in their own right. Specifically, if a user wants to observe the weights before they are applied

to the casted vote of each model, they can use one of these two commands.

4.3 Implementation of Code

Now that we have established the simpler functions, we can delve into the important

aspects of our package, namely, bagged.ensembler() and predict.ensemble().

4.3.1 Model Training

bagged.ensembler() takes the form:

bagged.ensembler <- function(formula = NULL, data = NULL, size = NULL,

model = NULL, sample.fraction = 0.632, ...)

www.manaraa.com

60

The inputs of bagged.ensembler() include: the prediction formula, a reference to some

data frame object, the number of models to construct, the model of choice, the bootstrap

fraction, and other additional inputs. Note that "..." is a feature that allows additional

optional arguments to be passed through to be embedded in functions that support them.

An example of an input structure for bagged.ensembler() can be seen below where the

additional operation arguments are preProcess and tuneLength. For a complete list of

available models and optional parameters refer to caret’s documentation.

models <- bagged.ensembler(formula = supp ~., data = ToothGrowth,

size = 100, model = "knn",

preProcess = c("center","scale"),

tuneLength = 20)

The output of models is a list structure containing sorted out of bag error rates for each

model, caret’s default output for each model and the provided formula.

> summary(models)

Length Class Mode

[1,] 200 -none- numeric

[2,] 100 -none- list

[3,] 3 formula call

To output each object in the list simply call: models[[x]] where x ∈ {1, 2, 3}. Below

we display the out of bag errors and the formula.

> head(models[[1]])

OOBError Model

20 0.2758621 20

https://CRAN.R-project.org/package=caret
https://CRAN.R-project.org/package=caret

www.manaraa.com

61

50 0.2758621 50

85 0.2903226 85

38 0.3000000 38

43 0.3142857 43

23 0.3333333 23

> models[[3]]

supp ~ .

models[[2]] will print out every model generated hence resulting in a long output. To

view a single model, issue the command models[[2]][i] with i ∈ {1, ..., size}. However,

the aforementioned command will only issue the summary of the ith learner. To view all

relevant details of the ith model, one must unlist the object. Below we provide an example.

> models[[2]][1]

[[1]]

k-Nearest Neighbors

37 samples

2 predictor

2 classes: ’OJ’, ’VC’

Pre-processing: centered (2), scaled (2)

Resampling: Bootstrapped (25 reps)

Summary of sample sizes: 37, 37, 37, 37, 37, 37, ...

Resampling results across tuning parameters:

www.manaraa.com

62

k Accuracy Kappa

5 0.5169010 0.076477981

7 0.5219981 0.090561341

9 0.5169446 0.079573591

11 0.5081771 0.074939383

13 0.5079328 0.077090662

15 0.4961933 0.066593492

17 0.4978584 0.069072450

Accuracy was used to select the optimal model using the largest value.

The final value used for the model was k = 7.

> model.details <- unlist(models[[2]][1], recursive = F)

> summary(model.details)

Length Class Mode

method 1 -none- character

modelInfo 13 -none- list

modelType 1 -none- character

results 5 data.frame list

pred 0 -none- NULL

bestTune 1 data.frame list

call 6 -none- call

dots 0 -none- list

metric 1 -none- character

www.manaraa.com

63

control 27 -none- list

finalModel 8 knn3 list

preProcess 21 preProcess list

trainingData 3 data.frame list

resample 3 data.frame list

resampledCM 6 data.frame list

perfNames 2 -none- character

maximize 1 -none- logical

yLimits 0 -none- NULL

times 3 -none- list

levels 2 -none- character

terms 3 terms call

coefnames 2 -none- character

xlevels 0 -none- list

We notice that once we unlist our object, we can retrieve the usual caret output of each

model. Hence no information is lost by bagged.ensembler().

Additionally, although not shown here, built into caret is the ability to construct learners

in parallel. If a user wishes to implement multi-processing all that is required to register

a parallel backend. One simple way to implement a backend is with the library doParallel

(Microsoft Corporation and Steve Weston, 2017).

library(doParallel)

cl <- makeCluster(5)

registerDoParallel(cl)

https://CRAN.R-project.org/package=caret
https://CRAN.R-project.org/package=caret
https://CRAN.R-project.org/package=doParallel

www.manaraa.com

64

Once the parallel backend is registered, all subsequent models are run in parallel (if supported

by the chosen model).

4.3.2 Model Evaluation

Having obtained the output of bagged.ensembler(), we can make use of the next main

function that is, predict.ensemble(). The format is as follows:

predict.ensemble <- function(object = NULL, data = NULL,

p = NULL, alpha = NULL)

Arguments of predict.ensemble() include: a bagged.ensembler() object, a reference

to a data frame, p and α values. Here p and α can a single number, a vector or a combination

of both. However, it should be observed that as the length of p and alpha increase so will

the computational time. Namely if p and α are vectors of length n and m, respectively,

we obtain a grid with n ∗ m unique combinations. Below we provide an example where p

is a vector containing integers one through five, and α is a sequence from zero to one in

increments of .25.

prediction <- predict.ensemble(object = models, data = ToothGrowth,

p = 1:5, alpha = seq(0,1,.25))

The output consists of two list. The first is a list of each model (sorted by OOB) and

their corresponding vote for each observation, the other is a list with accuracy values with a

corresponding p and alpha.

> head(prediction[[1]],5)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

model4 2 1 2 2 2 1 1 1 2 2 2 2 2 2 1 2 2 2 2 2 1 2 1 1

www.manaraa.com

65

model16 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 1 1 1 1

model42 1

model70 2 1 2 2 2 1 1 1 2 2 2 2 2 2 1 2 2 2 2 2 1 1 1 2

model94 1

25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

model4 1 1 1 2 1 1 1 1 2 1 1 1 1 1 2 1 2 1 1 1 2

model16 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 1 1 1 2

model42 1

model70 1 1 1 2 2 1 1 1 1 1 1 1 2 1 1 1 2 1 1 1 2

model94 1

46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

model4 1 1 2 2 1 1 1 2 1 1 1 1 1 1 1

model16 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1

model42 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

model70 1 1 2 2 1 1 1 2 1 2 1 1 1 1 2

model94 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

> prediction[[2]]

1 2 3 4 5 6 7 8 9 10

p 1.0000 2.00 3.0000 4.0000 5.0000 1.0000 2.00 3.00 4.00 5.00

alpha 0.0000 0.00 0.0000 0.0000 0.0000 0.2500 0.25 0.25 0.25 0.25

accuracy 0.6833 0.65 0.6667 0.6667 0.6667 0.7167 0.70 0.70 0.70 0.70

11 12 13 14 15 16 17 18 19 20 21 22 23 24

p 1.0 2.0 3.0 4.0 5.0 1.00 2.00 3.00 4.00 5.00 1.0 2.0 3.0 4.0

alpha 0.5 0.5 0.5 0.5 0.5 0.75 0.75 0.75 0.75 0.75 1.0 1.0 1.0 1.0

accuracy 0.7 0.7 0.7 0.7 0.7 0.70 0.70 0.70 0.70 0.70 0.7 0.7 0.7 0.7

www.manaraa.com

66

25

p 5.0

alpha 1.0

accuracy 0.7

Recall that from the construction of our weighted scheme, when α = 1 we have that all

weights are equivalent. That is, we no longer have a weighted average but a usual arithmetic

mean. As we can see from this output we can determine numerous parameter values and

their corresponding accuracy. With this information, users can determine which weighted

method and the strength of weights that are appropriate for their data set. As we can see

given p = 1 and α = .25 we obtain the highest predicted value which is larger than the usual

arithmetic average when α = 1. With this, it is possible to create a finer grid in-which we

can (hopefully) produce a larger increase in accuracy.

4.4 Package Limitations and Expansion

There are many future usability extensions that can be made to enhance the wbensem-

bleR package. One idea, previously mentioned, would the inclusion of multi-class data sets.

This would be of particular interest since a great deal of classification problems are non-

binary. Another idea, would allow this to generalize to allowing different models; as of now

only one type of model can be considered. However, it may be of use to aggregate several

different models.

www.manaraa.com

67

CHAPTER 5. CONCLUSION

Since the beginning, this body of work was aimed at solving a specific problem in the data

science area. As supervised learning is a large part of machine learning and has garnered

increased attention over the years, it makes intuitive sense to develop more ideas and appli-

cations to support this trend. To that end, for various models, tunable parameters are a way

to add a layer of flexibility so that the predictive learner can adhere to the data set more

precisely. However, not all models possess such parameters; namely, this is a component

missing for bagged ensembles.

This dissertation contains the entire gamut with respect to this issue. That is, through

theoretical derivations, numerical computations, and an implementation of a software pack-

age, we have designed a framework that can be used by numerous individuals for tuning

bagged ensembles.

Incrementally, the author first applied a weighted scheme to trees of the random forest

by way of Cesáro averages. In doing this, the results showed that we can be competitive the

random forest in certain cases in terms of prediction accuracy and more stable predictions.

Moreover, from a theoretical standpoint, we were able to show conditions in which our

methodology can be expected to outperform the random forest. Through the theory, we

were able to determine a stopping condition which results in a way to potentially obtain

higher accuracy and more consistent results while not constructing so many decision trees.

The next step taken was to generalized this to arbitrary models and a generalized weight-

ing scheme. The implications of this framework resulted in a way to simultaneously control

bias and variance. Namely a regularization term was added that allowed for convergence to

a pure bagged ensemble. However, determining the optimal parameters can be a difficult

www.manaraa.com

68

task. In our study, we performed a grid-search of numerous values. While this is a way to

find the best parameters, another method may be better. Moreover, using this methodology

it is unlikely that we are able to reduce bias to the levels of a boosted tree or a deep neural

network (DNN); however, our methodology has shorter training times as well as only two

parameters to tune unlike boosted trees and DNN which can have upwards of 30+ parame-

ters. This leads to a simplification of use as well as a way to control for bias and variance in

a convenient manner. With this, results were obtained that show the weighted methodology

can perform competitively well to pure bagging and the random forest.

From a practical standpoint, the R package constructed acts as a wrapper around

Max Kuhn’s caret. Among practitioners, caret is a widely used and popular machine

learning library since it contains many predictive learners as well as different combina-

tions of structural combinations. Our R package wbensembleR works with caret so that

no information is lost as shown in chapter 4. User’s can download the package from

github.com/hieu-phamt/wbensembleR.

It is the hope of the author that this dissertation comprehensively covers the first known

theoretical foundation for tunability of bagged ensembles. In the end, we anticipate this

theory and R package to used amongst the data science community.

5.1 Future Extension

Comparable to most open research problems, due to time limitations and other con-

straints, there are still many unsolved problems left to investigate. Within our weighted

ensemble scheme, we only consider a particular weight; however, as a generalization to the

theory and R package, one could consider having other sets of weighted averages to allow

users more flexibility. To that end, we only consider a single model when bagging. However

as stated in the introduction, one could consider a bagged stacked ensemble; although a

https://CRAN.R-project.org/package=caret
https://CRAN.R-project.org/package=caret
https://CRAN.R-project.org/package=caret
github.com/hieu-phamt/wbensembleR

www.manaraa.com

69

black-box, one could apply our idea to help strengthen the prediction accuracy of such en-

sembles. Lastly, our entire context was limited to two-class classification problems. Whereas

binary classification is indeed a large area, there are still numerous data sets with more

than two classes. For a generalization of our theory, one could represent and generalize the

theoretical foundation to allow for multi-class classification. Moreover, as an extension of

Chapter 3, we intend to further explore performance and default parameter settings in the

context of the bias and variance of the base classifier, with potentially both a theoretical and

empirical analysis.

www.manaraa.com

70

BIBLIOGRAPHY

Adressi, A., Hassanpour, S. T., and Azizi, V. (2016). Solving group scheduling problem
in no-wait flexible flowshop with random machine breakdown. Decision Science Letters,
5:157–168.

Apostol, T. (1976). Introduction to Analytic Number Theory. Springer New York.

Azizi, V., Jabbari, M., and Kheirkhah, A. S. (2016). M-machine, no-wait flowshop scheduling
with sequence dependent setup times and truncated learning function to minimize the
makespan. International Journal of Industrial Engineering Computations, 7(2):309–322.

Bache, K. and Lichman, M. (2013). UCI Machine Learning Repository.

Bashir, S., Qamar, U., and Khan, F. H. (2016). A Multicriteria Weighted Vote-Based
Classifier Ensemble for Heart Disease Prediction. Computational Intelligence, 32(4):615–
645.

Bhasuran, B., Murugesan, G., Abdulkadhar, S., and Natarajan, J. (2016). Stacked ensemble
combined with fuzzy matching for biomedical named entity recognition of diseases. Journal
of Biomedical Informatics, 64:1–9.

Blei, D. M. and Smyth, P. (2017). Science and data science. Proceedings of the National
Academy of Sciences.

Breiman, L. (1996a). Bagging predictors. Machine Learning, 24(2):123–140.

Breiman, L. (1996b). Out-of-Bag Estimation. Technical Report; Department of Statistics:
UC Berkeley, pages 1–13.

Breiman, L. (1998). Arcing classifiers. Annals of Statistics, 26(3):801–849.

Breiman, L. (2001). Random forests. Machine Learning, 45(1):5–32.

Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J. (1984). Classification and
Regression Trees, volume 19.

Bryll, R., Gutierrez-Osuna, R., and Quek, F. (2003). Attribute bagging: Improving accuracy
of classifier ensembles by using random feature subsets. Pattern Recognition, 36(6):1291–
1302.

www.manaraa.com

71

Buhlmann, P. and Hothorn, T. (2007). Boosting algorithms: Regularization, predicitng and
model fitting. Statistical Science, 22(4):477–505.

Chen, T. and Guestrin, C. (2016). XGBoost : Reliable Large-scale Tree Boosting System.
arXiv, pages 1–6.

Chen, T., He, T., Benesty, M., Khotilovich, V., and Tang, Y. (2018). xgboost: Extreme
Gradient Boosting. R package version 0.6.4.1.

Collell, G., Prelec, D., and Patil, K. R. (2018). A simple plug-in bagging ensemble based on
threshold-moving for classifying binary and multiclass imbalanced data. Neurocomputing,
275:330–340.

Cortes, C. and Vapnik, V. (1995). Support-Vector Networks. Machine Learning, 20(3):273–
297.

Cover, T. and Hart, P. (1967). Nearest neighbor pattern classification. IEEE Transactions
on Information Theory, 13(1):21–27.

Cox, D. R. (1958). The regression analysis of binary sequences. Journal of the Royal
Statistical Society. Series B (Methodological), 20(2):215–242.

Dietterich, T. G. (2000). Ensemble Methods in Machine Learning. Multiple Classifier Sys-
tems, 1857:1–15.

Donoho, D. (2017). 50 Years of Data Science. Journal of Computational and Graphical
Statistics, 26(4):745–766.

Ekbal, A. and Saha, S. (2013). Stacked ensemble coupled with feature selection for biomedical
entity extraction. Knowledge-Based Systems, 46:22–32.

El Habib Daho, M., Settouti, N., Lazouni, M. E. A., and Chikh, M. E. A. (2014). Weighted
vote for trees aggregation in Random Forest. In International Conference on Multimedia
Computing and Systems -Proceedings, volume 0, pages 438–443.

Elith, J., Leathwick, J. R., and Hastie, T. (2008). A working guide to boosted regression
trees.

Emerson, P. (2013). The original Borda count and partial voting. Social Choice and Welfare,
40(2):353–358.

Fattahi, P., Azizi, V., and Jabbari, M. (2015). Lot streaming in no-wait multi product
flowshop considering sequence dependent setup times and position based learning factors.
International Journal of Engineering, Transactions A: Basics, 28(7):1064–1071.

www.manaraa.com

72

Fraenkel, J. and Grofman, B. (2014). The Borda Count and its real-world alternatives:
Comparing scoring rules in Nauru and Slovenia. Australian Journal of Political Science,
49(2):186–205.

Freund, Y. (1995). Boosting a weak learning algorithm by majority. Information and Com-
putation, 121(2):256–285.

Freund, Y. and Schapire, R. E. (1997). A Decision-Theoretic Generalization of On-Line
Learning and an Application to Boosting. Journal of Computer and System Sciences,
55(1):119–139.

Freund, Y. and Schapire, R. R. E. (1996). Experiments with a New Boosting Algorithm.
International Conference on Machine Learning, pages 148–156.

Friedman, J. H. and Hall, P. (2007). On bagging and nonlinear estimation. Journal of
Statistical Planning and Inference, 137(3):669–683.

Fumera, G., Roli, F., and Serrau, A. (2005). Dynamics of variance reduction in bagging
and other techniques based on randomisation. Multiple Classifier Systems, pages 316–325.
Springer Berlin Heidelberg.

Graefe, A., Küchenhoff, H., Stierle, V., and Riedl, B. (2015). Limitations of Ensemble
Bayesian Model Averaging for forecasting social science problems. International Journal
of Forecasting, 31(3):943–951.

Gunes, F., Wolfinger, R., and Tan, P.-Y. (2017). Stacked Ensemble Models for Improved
Prediction Accuracy. SAS, pages 1–19.

Gupta, R., Kumar, N., and Narayanan, S. (2015). Affect prediction in music using boosted
ensemble of filters. In 2015 23rd European Signal Processing Conference, EUSIPCO 2015,
pages 11–15.

Hendricks, P. (2015). titanic: Titanic Passenger Survival Data Set. R package version 0.1.0.

Hoeting, J. A., Madigan, D., Raftery, A. E., and Volinsky, C. T. (1999). Bayesian Model
Averaging: A Tutorial. Statistical Science, 14(4):382–417.

Jiang, W. (2000). Does boosting overfit: Views from an exact solution. Technical report.

Jing, Y., Pavlović, V., and Rehg, J. M. (2008). Boosted Bayesian network classifiers. Machine
Learning, 73(2):155–184.

Klamler, C. (2004). The Dodgson ranking and the Borda count: A binary comparison.
Mathematical social sciences, 48(1):103–108.

Kuhn, M. and Johnson, K. (2013). Applied predictive modeling.

www.manaraa.com

73

Kuhn, M., Wing, J., Weston, S., Williams, A., Keefer, C., Engelhardt, A., Cooper, T.,
Mayer, Z., Kenkel, B., the R Core Team, Benesty, M., Lescarbeau, R., Ziem, A., Scrucca,
L., Tang, Y., Candan, C., and Hunt., T. (2017). caret: Classification and Regression
Training. R package version 6.0-76.

Lacasse, A., Laviolette, F., Marchand, M., and Turgeon-Boutin, F. (2010). Learning with
randomized majority votes. volume 6322 of Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
pages 162–177.

Li, H. B., Wang, W., Ding, H. W., and Dong, J. (2010). Trees Weighting Random Forest
method for classifying high-dimensional noisy data. In Proceedings - IEEE International
Conference on E-Business Engineering, ICEBE 2010, pages 160–163.

Martínez-Muñoz, G., Hernández-Lobato, D., and Suárez, A. (2007). Selection of Decision
Stumps in Bagging Ensembles. International Conference on Artificial Neural Networks,
pages 319–328.

Microsoft Corporation and Steve Weston (2017). doParallel: Foreach Parallel Adaptor for
the ’parallel’ Package. R package version 1.0.11.

Mittal, A. (2016). Hybrid Simulation Modeling for Regional Food Systems. Master’s thesis,
Iowa State University.

Mittal, A. and Krejci, C. C. (2017). A hybrid simulation modeling framework for regional
food hubs. Journal of Simulation, pages 1–14.

Mosca, A. and Magoulas, G. D. (2018). Distillation of deep learning ensembles as a reg-
ularisation method. In Smart Innovation, Systems and Technologies, volume 85, pages
97–118.

Naghibi, S. A., Ahmadi, K., and Daneshi, A. (2017). Application of support vector machine,
random forest, and genetic algorithm optimized random forest models in groundwater
potential mapping. Water Resources Management: An International Journal, Published
for the European Water Resources Association (EWRA), 31(9):2761–2775.

Oshiro, T. M., Perez, P. S., and Baranauskas, J. A. (2012). How many trees in a random for-
est? In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), volume 7376 LNAI, pages 154–168.

Ozay, M. and Vural, F. (2012). A New Fuzzy Stacked Generalization Technique and Analysis
of its Performance. CoRR.

Ponti, M. P. (2011). Combining classifiers: From the creation of ensembles to the decision
fusion. In Proceedings - 24th SIBGRAPI Conference on Graphics, Patterns, and Images
Tutorials, SIBGRAPI-T 2011, pages 1–10.

www.manaraa.com

74

Quinlan, J. R. (2006). Bagging, boosting, and C4.5. Proceedings of the Thirteenth National
Conference on Artificial Intelligence, 5(Quinlan 1993):725–730.

Rish, I. (2001). An empirical study of the naive Bayes classifier. Empirical methods in
artificial intelligence workshop, IJCAI, 22230(JANUARY 2001):41–46.

Ronao, C. A. and Cho, S. B. (2015). Random forests with weighted voting for anomalous
query access detection in relational databases. In Lecture Notes in Artificial Intelligence
(Subseries of Lecture Notes in Computer Science), volume 9120, pages 36–48.

Rosenblatt, F. (1958). The perceptron: a probabilistic model for information storage and
organization in the brain. Psychological review, 65(6):386–408.

Saari, D. G. (1985). The Optimal Ranking Method is the Borda Count. Discussion Pa-
pers 638, Northwestern University, Center for Mathematical Studies in Economics and
Management Science.

Schapire, R. E. (1990). The Strength of Weak Learnability. Machine Learning, 5(2):197–227.

Schapire, R. E. (2003). The boosting approach to machine learning: an overview. Nonlinear
Estimation and Classification, 171:149–171.

Schmidhuber, J. (2015). Deep Learning in Neural Networks: An Overview. Neural Networks,
61:85–117.

Setak, M., Azizi, V., Karimi, H., and Jalili, S. (2017). Pickup and delivery supply chain
network with semi soft time windows: metaheuristic approach. International Journal of
Management Science and Engineering Management, 12(2):89–95.

Sill, J., Takács, G., Mackey, L. W., and Lin, D. (2009). Feature-weighted linear stacking.
CoRR, abs/0911.0460.

Stein, E. M. and Shakarchi, R. (2003). Fourier Analysis: An Introduction.

Strobl, C., Boulesteix, A. L., and Augustin, T. (2007). Unbiased split selection for clas-
sification trees based on the Gini Index. Computational Statistics and Data Analysis,
52(1):483–501.

Subasi, A., Alickovic, E., and Kevric, J. (2017). Diagnosis of Chronic Kidney Disease by
Using Random Forest. In CMBEBIH 2017, volume 62, pages 589–594.

Valentini, G., Muselli, M., and Ruffino, F. (2004). Cancer recognition with bagged ensembles
of support vector machines. Neurocomputing, 56(1-4):461–466.

van der Laan, M. J., Polley, E. C., and Hubbard, A. E. (2007). Super Learner. Statistical
Applications in Genetics and Molecular Biology, 6(1).

www.manaraa.com

75

van Dop, H. and Steyn, D. G. (1990). Air Pollution Modeling and Its Application VIII.

Vezhnevets, A. and Barinova, O. (2007). Avoiding Boosting Overfitting by Removing Con-
fusing Samples. Work, pages 430–441.

Weisstein, E. (2004). Harmonic series. Champaign, IL, 2018.

Wickham, H. (2014). Tidy Data. Journal of Statistical Software, 59(10).

Wickham, H. (2016). tidyverse: Easily Install and Load ’Tidyverse’ Packages.

Winham, S. J., Freimuth, R. R., and Biernacka, J. M. (2013). A weighted random forests ap-
proach to improve predictive performance. Statistical Analysis and Data Mining, 6(6):496–
505.

Wolpert, D. H. (1992). Stacked generalization. Neural Networks, 5(2):241–259.

Wu, G., Sanner, S., and Oliveira, R. F. S. C. (2015). Bayesian model averaging naive bayes
(bma-nb): Averaging over an exponential number of feature models in linear time. In
Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, AAAI’15,
pages 3094–3100. AAAI Press.

Zenko, B. (2004). Is Combining Classifiers Better than Selecting the Best One? Machine
Learning, 54(3):255–273.

Zhou, Z. (2012). Ensemble Methods: Foundations and Algorithms. Chapman and Hall.

	2018
	Generalized weighting for bagged ensembles
	Hieu Trung Pham
	Recommended Citation

	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ACKNOWLEDGMENTS
	ABSTRACT
	1. INTRODUCTION
	1.1 Background
	1.2 Motivation
	1.3 Ensemble Learning
	1.3.1 Bootstrap Aggregating (Bagging)
	1.3.2 Boosting
	1.3.3 Stacking

	1.4 Weighted Averages
	1.4.1 Out of Bag Error
	1.4.2 Cesáro Averages
	1.4.3 Bayesian Model Averaging
	1.4.4 Borda Count

	1.5 Organization of Dissertation

	2. CESÁRO RANDOM FOREST
	2.1 Introduction
	2.2 Methodology
	2.2.1 Cesáro Averages
	2.2.2 Cesáro Random Forest and Tree Sequencing

	2.3 Results
	2.3.1 Theory
	2.3.2 Numerical Results and Interpretation

	2.4 Conclusion

	3. GENERALIZED WEIGHTING SCHEME FOR BAGGED ENSEMBLES
	3.1 Introduction
	3.2 Methodology
	3.2.1 Weighting Scheme
	3.2.2 Weighted Bagged Ensemble Learning

	3.3 Numerical Results
	3.3.1 Traditional Results
	3.3.2 Synthetic Results

	3.4 Conclusion

	4. WBENSEMBLER: AN R PACKAGE FOR WEIGHTED BAGGED ENSEMBLE LEARNING
	4.1 Introduction
	4.2 Overview of wbensembleR
	4.3 Implementation of Code
	4.3.1 Model Training
	4.3.2 Model Evaluation

	4.4 Package Limitations and Expansion

	5. CONCLUSION
	5.1 Future Extension

	BIBLIOGRAPHY

